Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Silicophosphate calcium ceramics are widely used in orthopedic and oral surgery applications because of their properties for stimulating bone formation and bone bonding. These bioceramics, together with multipotent undifferentiated adult human mesenchymal stem cells, are serious candidates in the field of bone tissue engineering and regenerative medicine. For this reason, the influence of a novel 30 wt%CaSiO - 70 wt%Ca(PO) ceramic over a primary adult human mesenchymal stem cells culture has been investigated in this study, observing a total colonization of the biomaterial by cells at 21 days. The osteoinductive capacity of the materials was also studied: alkaline phosphatase activity, gene quantification of osteoblastic genes and calcium deposits stained by Alizarin Red test, showed evidences of osteogenic differentiation of adult human mesenchymal stem cells seeded with this bioceramic both in growth medium and osteogenic medium. Therefore, the 30 wt%CaSiO - 70 wt%Ca(PO) bioceramic represents a potential scaffold which could be used in the field of biomaterials for bone tissue engineering, allowing cell adhesion, proliferation and promoting osteogenic differentiation of adult human mesenchymal stem cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.msec.2019.110355 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!