Mesenchymal stromal cell (MSCs) represent a class of biologics with the prospects for employment as immunomodulatory, tissue-protective, and regenerative therapeutics. In parallel with cellular therapy, cell-free therapy based on MSC-secreted bioactive factors is being actively developed. MSCs secrete a variety of protein, peptide, RNA, and lipid mediators which can be concentrated, frozen, or even lyophilized without loss of activity, which gives them a certain advantage over cellular products requiring liquid nitrogen storage and infrastructure to revive frozen cells. This review (i) describes currently conducted clinical trials of cell-free products containing MSC secretome; (ii) summarizes main approaches to the generation and characterization of conditioned media concentrates and extracellular vesicle isolates; (iii) analyzes a variety of preclinical studies where effectiveness of secretome products has been shown; and (iv) summarizes current knowledge about secretome bioactive components obtained by analysis of in vivo models testing the therapeutic potential of the MSC secretome.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1134/S0006297919110129 | DOI Listing |
Cytotherapy
January 2025
Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune 411018, India.
Background Aims: The clinical translation of mesenchymal stromal cell secretome (MSC-S) has been challenging owing to a lack of appropriate methods in downstream processing. Dialysis is an age-old method of protein purification by the exchange of small molecules through a semi-permeable membrane. In this study, we investigated the potential of three forms of umbilical cord-derived MSC secretome (UC-MSC-S)-native (S), dialyzed (DS), and lyophilized (LDS)-for wound healing applications.
View Article and Find Full Text PDFActa Biomater
January 2025
Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland; Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland. Electronic address:
Functional cartilaginous tissues can potentially be engineered by bringing together numerous microtissues (µTs) and allowing them to fuse and re-organize into larger, structurally organized grafts. The maturation level of individual microtissues is known to influence their capacity to fuse, however its impact on the long-term development of the resulting tissue remains unclear. The first objective of this study was to investigate the influence of the maturation state of human bone-marrow mesenchymal stem/stromal cells (hBM-MSCSs) derived microtissues on their fusion capacity and the phenotype of the final engineered tissue.
View Article and Find Full Text PDFNarra J
December 2024
Faculty of Medicine, Universitas HKBP Nommensen, Medan, Indonesia.
Ischemic stroke is a sudden onset of neurological deficit resulting from a blockage in cerebral blood vessels, which can lead to brain tissue damage, chronic disability, and increased risk of mortality. Secretome from hypoxic mesenchymal stem cells (SH-MSC) is a potential therapy to improve neurological deficit by increasing the expression of vascular endothelial growth factor (VEGF) and reducing glial fibrillary acidic protein (GFAP). These effects can reduce the infarction area of ischemic stroke.
View Article and Find Full Text PDFStem Cell Res Ther
January 2025
IRMB, Univ Montpellier, INSERM, CHU St Eloi, 80 AV A Fliche, 34295-Cedex-05, Montpellier, France.
Background: The regenerative potential of mesenchymal stromal/stem cells (MSCs) has been extensively studied in clinical trials in the past decade. However, despite the promising regenerative properties documented in preclinical studies, for instance in osteoarthritis (OA), the therapeutic translation of these results in patients has not been fully conclusive. One factor contributing to this therapeutic barrier could be the presence of senescent cells in OA joints.
View Article and Find Full Text PDFPediatr Res
January 2025
Department of Paediatrics, Monash University, Melbourne, VIC, Australia.
Cell therapies as treatments for neonatal conditions have attracted significant research and parent interest over the last two decades. Mesenchymal stromal cells, umbilical cord blood cells and neural stem cells translate from lab, to preclinical and into clinical trials, with contributions being made from all over the world. Effective and timely translation involves frequent reflection and consultation from research-adjacent fields (i.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!