The Biocompatibility and stability of nanoparticles using plants have been widely investigated due to its applications in the biomedical industry. Currently, there is a growing interest in nanoparticles in bone remodelling. Artemisia annua is an herbal plant commonly used in the treatment of various ailments. This study investigated the zinc oxide nanoparticles (ZnO NPs) using the green synthesis technique from A. annua and the effects of A. annua ZnO-NPs on osteoblast differentiation and inhibition of osteoclast formation. The formulated ZnO-NPs from A. annua were characterized by using various spectroscopic and microscopic methods Fourier transform-infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), X-ray diffraction (XRD), and UV-Visible spectroscopy. The disc diffusion method was adopted to test the antimicrobial efficacy of ZnO-NPs. The viability of MG-63 cells were assayed by MTT test and Osteogenic-related assays like Real-time PCR and Mineralization assay were adopted to determine the effects of A. annua ZnO-NPs on the multiplication and differentiation of human osteoblast-like MG-63 cells. The characterization of A. annua ZnO-NPs revealed the crystalline nature with high zinc content and the presence of bioactive compounds from A. annua extract. The synthesized A. annua ZnO-NPs indicate significant antimicrobial potential. Besides, A. annua ZnO-NPs enhanced the proliferation, differentiation, and mineralization without causing significant cytotoxic impact on MG-63 cells. These effects indicate that A. annua ZnO-NPs can both stimulate bone formation via the differentiation of MG-63 cells. Hence, it was concluded that A. annua ZnO-NPs can be a promising agent for the treatment of bone deformities and bone-related diseases, however further research also required to explore the clear mechanism of A. annua ZnO-NPs in the formation and differentiation of MG-63 cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jphotobiol.2019.111652 | DOI Listing |
J Photochem Photobiol B
January 2020
Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China. Electronic address:
The Biocompatibility and stability of nanoparticles using plants have been widely investigated due to its applications in the biomedical industry. Currently, there is a growing interest in nanoparticles in bone remodelling. Artemisia annua is an herbal plant commonly used in the treatment of various ailments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!