N-Butylbenzenesulfonamide (NBBS) is a plasticizer detected in the environment suggesting potential human exposure. These studies investigated the in vitro hepatic clearance and disposition of [C]NBBS in rodents following a single gavage (2, 20 or 200 mg/kg) or intravenous (IV) administration (20 mg/kg). NBBS was cleared slower in hepatocytes from humans compared to rodents. [C]NBBS was well-absorbed in male rats following gavage administration and excreted extensively in urine (70-76 %) and feces (11-15 %) 72 h following administration. Following a 20 mg/kg gavage dose in male rats, 25 % of the dose was excreted in bile by 24 h suggesting that observed fecal excretion was due to biliary excretion. The radioactivity was distributed to tissues with 14 % and 8 % of the administered dose remaining in tissues at 24 and 72 h, respectively. There was no apparent dose-dependent effect in disposition in male rats. Disposition patterns were similar in female rats (urine, 83 %; feces, 14 %) and male (urine, 69 %; feces, 11 %) and female (urine, 72 %; feces, 9 %) mice following gavage administration of 20 mg/kg. The disposition following IV administration was similar to that of gavage. Urinary radiochemical profiles were similar between doses, routes, species, and sexes. Among numerous metabolites identified, oxidative metabolites of NBBS predominated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7028346PMC
http://dx.doi.org/10.1016/j.toxlet.2019.11.015DOI Listing

Publication Analysis

Top Keywords

administration 20 mg/kg
12
male rats
12
urine feces
12
gavage administration
8
rats
6
disposition
5
gavage
5
administration
5
disposition metabolism
4
metabolism n-butylbenzenesulfonamide
4

Similar Publications

Avian coccidiosis, caused by the protozoan Eimeria, leads to significant economic losses for the poultry industry. In this study, bacteriophages that specifically bind to the calcium-binding protein (EtCab) of Eimeria tenella were selected using a biopanning process with a pIII phage display library. The recombinant EtCab protein served as the ligand in this selection process.

View Article and Find Full Text PDF

Background: Drug use trends change rapidly among youth, leaving intervention experts struggling to respond promptly. Delays in responses can lead to preventable morbidity and mortality. The COVID-19 pandemic underscored the need for implementation science to facilitate rapid, equitable responses using existing treatment and prevention efforts.

View Article and Find Full Text PDF

Background: The approval of new disease-modifying therapies by the U.S. Food and Drug Administration and the European Medicine Agency makes it necessary to optimize non-invasive and cost-effective tools for the identification of subjects at-risk of developing Alzheimer's Disease (AD).

View Article and Find Full Text PDF

Tailoring traditional Chinese medicine in cancer therapy.

Mol Cancer

January 2025

Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, People's Republic of China.

Cancer remains a formidable global health challenge, necessitating innovative therapeutic approaches to enhance treatment efficacy and reduce adverse effects. The traditional Chinese medicine (TCM), as an embodiment of ancient wisdom, has been validated to regulate the holistic human capacity against both internal and external "evils" in accordance with TCM principles. Therefore, it stands to reason to integrate TCM into current cancer therapy paradigms, such as chemotherapy, immunotherapy, and targeted therapy.

View Article and Find Full Text PDF

Background And Objective: Mitochondria are crucial to the function of renal tubular cells, and their dynamic perturbation in many aspects is an important mechanism of diabetic kidney disease (DKD). Single-nucleus RNA sequencing (snRNA-seq) technology is a high-throughput sequencing analysis technique for RNA at the level of a single cell nucleus. Here, our DKD mouse kidney single-cell RNA sequencing conveys a more comprehensive mitochondrial profile, which helps us further understand the therapeutic response of this unique organelle family to drugs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!