After radiation exposure, one of the critical processes for cellular survival is the repair of DNA double strand breaks. The pathways involved in this response are complex in nature and involve many individual steps that act across different time scales, all of which combine to produce an overall behaviour. It is therefore experimentally challenging to unambiguously determine the mechanisms involved and how they interact whilst maintaining strict control of all confounding variables. In silico methods can provide further insight into results produced by focused experimental investigations through testing of the hypotheses generated. Such computational testing can asses competing hypotheses by investigating their effects across all time scales concurrently, highlighting areas where further experimental work can have the most significance. We describe the construction of a mechanistic model by combination of several hypothesised mechanisms reported in the literature and supported by experiment. Compatibility of these mechanisms was tested by fitting simulation to results reported in the literature. To avoid over-fitting, we used an approach of sequentially testing individual mechanisms within this pathway. We demonstrate that using this approach the model is capable of reproducing published protein kinetics and overall repair trends. This provides evidence supporting the feasibility of the proposed mechanisms and revealed how they interact to produce an overall behaviour. Furthermore, we show that the assumed motion of individual double strand break ends plays a crucial role in determining overall system behaviour.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.dnarep.2019.102743 | DOI Listing |
Nat Chem Biol
January 2025
Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA.
Cell-free systems are powerful synthetic biology technologies that can recapitulate gene expression and sensing without the complications of living cells. Cell-free systems can perform more advanced functions when genetic circuits are incorporated. Here we expand cell-free biosensing by engineering a highly specific isothermal amplification circuit called polymerase strand recycling (PSR), which leverages T7 RNA polymerase off-target transcription to recycle nucleic acid inputs within DNA strand displacement circuits.
View Article and Find Full Text PDFNat Cell Biol
January 2025
Genome Integrity Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia.
Double-strand breaks (DSBs) can initiate mitotic catastrophe, a complex oncosuppressive phenomenon characterized by cell death during or after cell division. Here we unveil how cell cycle-regulated DSB repair guides disparate cell death outcomes through single-cell analysis of extended live imaging. Following DSB induction in S or G2, passage of unresolved homologous recombination intermediates into mitosis promotes non-immunogenic intrinsic apoptosis in the immediate attempt at cell division.
View Article and Find Full Text PDFStructural variations (SVs) play important roles in genetic diversity, evolution, and carcinogenesis and are, as such, important for human health. However, it remains unclear how spatial proximity of double-strand breaks (DSBs) affects the formation of SVs. To investigate if spatial proximity between two DSBs affects DNA repair, we used data from 3C experiments (Hi-C, ChIA-PET, and ChIP-seq) to identify highly interacting loci on six different chromosomes.
View Article and Find Full Text PDFTalanta
January 2025
School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China.
Sensitive and accurate detection and imaging of different microRNAs (miRNAs) in cancer cells hold great promise for early disease diagnosis. Herein, a DNA tetrahedral scaffold (DTS)-corbelled autonomous-motion (AM) molecular machine based fluorescent sensing platform was designed for simultaneous detection of two types of miRNAs (miRNA-21 and miRNA-155) in HeLa cells. Locking-strand-silenced DNAzymes (P:L duplex) were firstly grafted at the loop of target-analogue-embedded double-stem hairpin substrates (TDHS) of DTS, making the sensor in a "signal off" state due to the closely distance between modified fluorophores (FAM and Cy5) with the corresponding quenchers (BHQ1 and BHQ2).
View Article and Find Full Text PDFMamm Genome
January 2025
CNRS, INSERM, CELPHEDIA, Institut Clinique de la Souris (ICS), Université de Strasbourg, Illkirch, PHENOMIN, France.
Genome editing, in particular the CRISPR/Cas9 system, is widely used to generate new animal models. However, the generation of mutations, such as conditional knock-out or knock-in, can remain complex and inefficient, in particular because of the difficulty to deliver the donor DNA (single or double stranded) into the nucleus of fertilized oocytes. The use of recombinant adeno-associated viruses (rAAV) as donor DNA is a rapidly developing approach that promises to improve the efficiency of creation of animal models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!