The objectives of this study were to assess the lethal and sub-lethal effects of the aquatic herbicide commercial formulation, Reward® (373 g/L DB), using application scenarios prescribed by the manufacturer. Specifically, a 14 d period between applications of Reward® in a water body undergoing treatment is required, yet the effects of these 'pulse' exposure scenarios on aquatic wildlife such as fish are unknown. In the first experiment early life stage FHM were exposed to a continuous DB concentrations from 0.105-12.6 mg/L which yielded a larval 7 d LC of 2.04 mg/L as well as a significant decrease in body mass (25.0 ± 11.6%) at the 1.18 mg/L Reward® concentration. In a second experiment, FHM larvae were exposed for 24 h and then reared in clean water for 14 d followed by a second 24 h exposure to Reward®. The 16 d LC value was 4.19 mg/L. In a third experiment, adult FHM were exposed in a pulse/discontinuous manner to Reward® with a calculated 21 d LC value of 6.71 mg/L. No significant changes in gonadosomatic index or fecundity of the F generation's hatch success were found when eggs from exposed adults were then reared in clean water. Proteome analyses of whole FHM larvae from the discontinuous/pulse exposure showed the primary gene ontology molecular functions of the proteins in fish exposed to 3.78 mg/L DB that resulted in ~30% mortality with positive or negative differential abundance (p-value < .2) were: structural molecule activity; identical protein binding; structural constituent of cytoskeleton; ion binding; calcium ion binding; cytoskeletal protein binding; actin binding; and, ATP binding. These findings suggest that concentrations causing adverse effects occur above the maximum concentration predicted by the manufacturer when applied according to the label (i.e. >0.37 mg/L).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cbd.2019.100635 | DOI Listing |
J Fungi (Basel)
November 2024
Department of Biosciences and Biotechnologies, Graduate School of Bioresources and Bioenvironment Sciences, Kyushu University, 744 W5-674, Motooka Nishi-ku, Fukuoka 819-0395, Japan.
(), the second most prevalent Candida pathogen globally, has emerged as a major clinical threat due to its ability to develop high-level azole resistance. In this study, two new 5,6-dihydrotetrazolo[1,5-]quinazoline derivatives ( and ) were synthesized and characterized using IR, LC-MS, H, and C NMR spectra. Along with 13 previously reported analogues, these compounds underwent in vitro antifungal testing against clinical isolates using a serial dilution method (0.
View Article and Find Full Text PDFInt J Phytoremediation
December 2024
Department of Ecology, Jinan University, Guangzhou, China.
Vegetated ditches have been demonstrated to be an effective method for pollutant remediation. This study assesses the removal potential and pathways for herbicide runoff pollution utilizing , , , and ditches. Resultes show these vegetated ditches significantly outperform unvegetated ones in removing atrazine and diuron during runoff events ( < 0.
View Article and Find Full Text PDFBull Environ Contam Toxicol
December 2024
Jiangsu Key Laboratory for Bioaffiliationersity and Biotechnology, School of Biological Sciences, Nanjing Normal University, Nanjing, 210023, China.
Atrazine is a predominant herbicide globally, and its residues are commonly found in natural water bodies due to its extensive use. Atrazine is known for its detrimental effects on the reproductive abilities of aquatic plants and animals. Our study explored the impact of maternal exposure to atrazine on the survival and performance of offspring using the water flea Daphnia magna as a model organism.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2024
Laboratório de Ecologia e Conservação, Universidade Federal da Fronteira Sul, Campus Erechim, RS 135 - km 72, nº 200, Erechim, RS, Brazil.
Atrazine and glyphosate are considered some of the main pollutants for aquatic ecosystems, directly and indirectly affecting non-target organisms, such as amphibians. This study aimed to evaluate the sublethal effects of different concentrations of atrazine-based herbicide (ABH) and glyphosate-based herbicide (GBH) commercial formulations, both individually and in a mixture, through toxicity tests on the larval stage of Boana faber. Tadpoles were exposed to concentrations of ABH (2, 9.
View Article and Find Full Text PDFSci Total Environ
December 2024
Key Laboratory of Integrated Rice-Fish Farming Ecosystem, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Shanghai Aquaculture Engineering and Technology Research Centre, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China.
Glyphosate (Gly), the world's most widely used herbicide in agriculture, can poison the red swamp crayfish, Procambarus clarkii, via spray drift and surface runoff into surface waters. However, there is a paucity of research on the mechanisms that affect crayfish tolerance to Gly at typical environmental concentrations. To address this research gap, we investigated the effects of Gly stress (0, 6, 12, 24, and 72 h) at different concentrations (0, 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!