Molecular scaffolds: when DNA becomes the hardware for single-molecule investigations.

Curr Opin Chem Biol

Institut de Biologie de L'Ecole Normale Supérieure, ENS, CNRS, INSERM, PSL Research University, Paris, France.

Published: December 2019

Over the past few decades, single-molecule manipulation has been widely applied to the real-time analysis of biomolecular interactions. It has enabled researchers to decipher structure-function relationships for polymers, enzymes, and larger-scale molecular machines, in particular by harnessing force to probe both chemical and mechanical stabilities. Nucleic acids have played a central role in this effort because, in addition to their biological significance, they exhibit unique polymeric properties which have recast them as key components participating in numerous experimental designs. In this review, we introduce recent developments highlighting this dual nature of nucleic acids in biophysics, as objects of study but also as tools allowing novel approaches. More specifically, we present molecular scaffolds as an emerging concept and describe their use in single-molecule force spectroscopy. Aspects related to folding and noncovalent interactions will be presented in parallel to research in enzymology, with a focus on the acquisition of thermodynamic and kinetic data.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbpa.2019.09.006DOI Listing

Publication Analysis

Top Keywords

molecular scaffolds
8
nucleic acids
8
scaffolds dna
4
dna hardware
4
hardware single-molecule
4
single-molecule investigations
4
investigations decades
4
decades single-molecule
4
single-molecule manipulation
4
manipulation applied
4

Similar Publications

Tryptophan catabolism is a central pathway in many cancers, serving to sustain an immunosuppressive microenvironment. The key enzymes involved in this tryptophan metabolism such as indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase (TDO) are reported as promising novel targets in cancer immunotherapy. IDO1 and TDO overexpression in TNBC cells promote resistance to cell death, proliferation, invasion, and metastasis.

View Article and Find Full Text PDF

To develop and evaluate graphene oxide/gelatin/alginate scaffolds for advanced wound therapy capable of mimicking the native extracellular matrix (ECM) and bio-stimulating all specific phases of the wound healing process, from inflammation and proliferation to the remodeling of damaged skin tissue in three dimensions. The scaffolds were engineered as interpenetrating polymeric networks by the crosslinking reaction of gelatin in the presence of alginate and characterized by structural, morphological, mechanical, swelling properties, porosity, adhesion to the skin tissue, wettability, and in vitro simultaneous release of the active agents. Biocompatibility of the scaffolds were evaluated in vitro by MTT test on fibroblasts (MRC5 cells) and in vivo using assay.

View Article and Find Full Text PDF

Analysis of the CHS Gene Family Reveals Its Functional Responses to Hormones, Salinity, and Drought Stress in Moso Bamboo ().

Plants (Basel)

January 2025

State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China.

Chalcone synthase (CHS), the first key structural enzyme in the flavonoid biosynthesis pathway, plays a crucial role in regulating plant responses to abiotic stresses and hormone signaling. However, its molecular functions remain largely unknown in , which is one of the most economically and ecologically important bamboo species and the most widely distributed one in China. This study identified 17 genes in and classified them into seven subgroups, showing a closer evolutionary relationship to genes from rice.

View Article and Find Full Text PDF

Fifteen compounds (-) constructed on a hybrid structure combining a β-phenyl-α,β-unsaturated carbonyl template and a 2-aminothiazol-4(5)-one scaffold were designed and synthesized as potential novel anti-tyrosinase substances. Two compounds ( and ) showed more potent inhibition against mushroom tyrosinase than kojic acid, and the inhibitory activity of (IC value: 1.60 μM) was 11 times stronger than that of kojic acid.

View Article and Find Full Text PDF

Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have emerged as a promising therapeutic strategy for spinal cord injury (SCI). These nanosized vesicles possess unique properties such as low immunogenicity and the ability to cross biological barriers, making them ideal carriers for delivering bioactive molecules to injured tissues. MSC-EVs have been demonstrated to exert multiple beneficial effects in SCI, including reducing inflammation, promoting neuroprotection, and enhancing axonal regeneration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!