The root apex is the most active part for water and ions uptake, however, longitudinal alterations in root characteristics along root apex and consequences for metal uptake in hyperaccumulator are poorly understood. Here, we compared cadmium (Cd)-induced longitudinal alterations in root apex of two ecotypes of Sedum alfredii and assess their effects on Cd uptake. Under Cd treatment, cell death began from epidermis to the stele in non-hyperaccumulating ecotype (NHE) over time, and the number of dead cells was significantly higher than that in hyperaccumulating ecotype (HE). Cd-induced the presence of border-like cells (BLCs) surrounding the root tip of NHE prevented Cd from entering roots, however, almost no BLCs were observed in the root tip of in HE. Besides, Cd-treated NHE exhibited 76% and 52% decrease in the proportions of meristematic and elongation zone, respectively, resulting in lower Cd influx and less intensive Cd-fluorescence in these zones, as compared with HE. In the differentiation zone, Cd induced earlier initiation of root hairs (RHs), lower RHs-density, shorter RHs-length, thicker RHs-radius and less trichoblasts in NHE than those in HE. These remarkable variations led to less Cd influx and lower intensity of Cd-fluorescence in RHs of NHE than those of HE. Furthermore, decline in cell wall thickness under Cd exposure resulted in less cell-wall-bond Cd in the cell wall of HE. Therefore, Cd-induced alterations in root characteristics alongside root apex contributed to the difference in Cd uptake and accumulation between two ecotypes of S. alfredii.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2019.125290 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!