Characterization and application of a novel laccase derived from Bacillus amyloliquefaciens.

Int J Biol Macromol

Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, National Engineering Laboratory for Industrial Enzymes, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China. Electronic address:

Published: May 2020

As the copper-containing enzymes, laccases demonstrate a promising potential in various environmental and industrial applications. In this study, a bacterial strain isolated from soil exhibited the laccase activity, which was subsequently characterized and named as Bacillus amyloliquefaciens TCCC 111018. The novel gene encoding CotA-laccase (lac) was amplified using the genome of B. amyloliquefaciens TCCC 111018 as the template and efficiently and actively expressed in Escherichia coli. The recombinant LAC (rLAC) exhibited its highest activity at 80 °C and pH 5.5 for 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) oxidization and 80 °C and pH 7.0 for 2,6-dimethoxyphenol (2,6-DMP) oxidization. rLAC was stable at up to 60 °C and within the pH ranging from 3.0 to 9.0 when using the substrate ABTS. Furthermore, rLAC demonstrated the relatively high tolerance to NaCl, SDS, and most metal ions. Moreover, rLAC was capable of decolorizing the structurally different azo, anthraquinone, and triphenylmethane with different mediator at 60 °C under pH 5.5, 7.0, and 9.0. Therefore, rLAC would be an ideal candidate for lots of biotechnological and industrial applications due to its stability in the extreme conditions, including but not limit to pH, high temperature, halides, heavy metals and detergents.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2019.11.117DOI Listing

Publication Analysis

Top Keywords

bacillus amyloliquefaciens
8
industrial applications
8
amyloliquefaciens tccc
8
tccc 111018
8
rlac
5
characterization application
4
application novel
4
novel laccase
4
laccase derived
4
derived bacillus
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!