Poly(ε-caprolactone)/poly(lactic acid) (PCL/PLA) blends are promising biomaterials with biodegradable characteristics. However, poor compatibility of the two components may lead to undesirable mechanical properties. In this work, the effect of combining carboxyl multi-walled carbon nanotubes (CNTs) and organically modified montmorillonite (MMT) on the morphology and properties of PCL/PLA blend was investigated. The morphological observations and rheological analysis showed that exfoliated MMT platelets enhanced interfacial adhesion of the two phases, whereas CNTs formed a percolating network in PCL matrix. The addition of CNTs/MMT (0.5 wt%: 0.5 wt%) led to an increase by 137.4% in elongation at break, 79.6% in tensile strength, and 14 °C in decomposition temperature without sacrificing its rigidity apparently for the PCL/PLA matrix. Obvious synergistic effect was demonstrated in comparison to the blends containing single nanofiller. This study demonstrated that combining CNTs and MMT is a facile way to preparing immiscible PCL/PLA blends based nanocomposites with interesting structure and properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2019.10.262 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!