Polydatin (PD) has many pharmacological activities; however, its bioavailability is still a critical cornerstone issue. The present investigation aimed to develop a novel oral formula of polydatin-loaded chitosan nanoparticles (PD-CSNPs) to improve PD therapeutic potential against type 2 diabetes. The interaction mechanism between PD and CSNPs was studied via Monte Carlo and molecular dynamics simulations. The formula was prepared and characterized by FTIR, XRD, TEM, and dynamic light scattering. The release profile of PD was studied in vitro, as well as the cytotoxicity effect versus Vero cell line and antidiabetic activity in type 2 diabetic rats were investigated. The practical results verified the formation of PD-CSNPs with entrapment efficiency of about 96.74 ± 0.39%, size average 144.25 ± 3.37 nm, and the prolonged release pattern was less than 20% after 12 hrs. The cytotoxicity study confirmed the safety of the formula at low and high doses. Moreover, the in vivo study revealed that PD-CSNPs exhibited highly significant antidiabetic efficacy in diabetic rats compared to free PD. To conclude, the current investigation proved that CSNPs are promising nanocarriers for nontoxic and effective PD delivery against type 2 diabetes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2019.11.031 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!