A series of phosphorene (BP) nanocomposites was prepared to realize simultaneous electrochemical determination of clenbuterol (CLB) and ractopamine (RAC). CLB and RAC are the most commonly used β-agonists in animal-derived food. The BP nanohybrid was obtained by co-decoration with both mono(6-mercapto-6-deoxy)-β-cyclodextrin and poly(3,4-ethylenedioxythiophene) nanoparticles. It displays high stability, antifouling capability, a large electrochemical active surface and good electrochemical response. The electrochemical assisted antifouling strategy was selected by further eliminating the fouling of the electrode surface using continuous cyclic voltammetry. The electrode was employed for electrochemical sensing of CLB and RAC at typical peak voltages of 0.8 and 1.0 V (vs. SCE). Responses are linear in the 0.3-90 μM concentration range for CLB, and from 0.3 to 9.4 μM for RAC under optimal conditions. The limit of detection are 0.14 and 0.12 μM, respectively. The sensor was employed for simultaneous determination of CLB and RAC in (spiked) beef, feed and bovine serum samples with acceptable recoveries. Graphical abstractAn electrochemically assisted anti-fouling method for simultaneous voltammetric nanosensing of clenbuterol (CLB) and ractopamine (RAC) in edible cattle product samples using high-stable and anti-foul phosphorene (BP) co-decorated with mono(6-mercapto-6-deoxy)-β-cyclodextrin (S-β-CD) and poly(3,4-ethylenedioxythiophene) (PEDOTNPs).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00604-019-3908-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!