AI Article Synopsis

Article Abstract

Hepatocellular carcinoma (HCC) is a major cause of cancer-related deaths, but its molecular mechanisms are not yet well characterized. Long noncoding RNAs (lncRNAs) play crucial roles in tumorigenesis, including that of HCC. However, the role of homeobox A11 antisense (HOXA11-AS) in determining HCC stem cell characteristics remains to be explained; hence, this study aimed to investigate the effects of HOXA11-AS on HCC stem cell characteristics. Initially, the expression patterns of HOXA11-AS and HOXA11 in HCC tissues, cells, and stem cells were determined. HCC stem cells, successfully sorted from Hep3B and Huh7 cells, were transfected with short hairpin or overexpression plasmids for HOXA11-AS or HOXA11 overexpression and depletion, with an aim to study the influences of these mediators on the self-renewal, proliferation, migration, and tumorigenicity of HCC stem cells in vivo. Additionally, the potential relationship and the regulatory mechanisms that link HOXA11-AS, HOXA11, and the Wnt signaling pathway were explored through treatment with Dickkopf-1 (a Wnt signaling pathway inhibitor). HCC stem cells showed high expression of HOXA11-AS and low expression of HOXA11. Both HOXA11-AS silencing and HOXA11 overexpression suppressed the self-renewal, proliferation, migration, and tumorigenicity of HCC stem cells in vivo, as evidenced by the decreased expression of cancer stem cell surface markers (CD133 and CD44) and stemness-related transcription factors (Nanog, Sox2, and Oct4). Moreover, silencing HOXA11-AS inactivated the Wnt signaling pathway by decreasing the methylation level of the HOXA11 promoter, thereby inhibiting HCC stem cell characteristics. Collectively, this study suggested that HOXA11-AS silencing exerts an antitumor effect, suppressing HCC development via Wnt signaling pathway inactivation by decreasing the methylation level of the HOXA11 promoter.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6874533PMC
http://dx.doi.org/10.1038/s12276-019-0328-xDOI Listing

Publication Analysis

Top Keywords

hcc stem
28
stem cells
24
wnt signaling
20
signaling pathway
20
stem cell
16
cell characteristics
12
hoxa11-as hoxa11
12
hcc
11
hoxa11-as
10
stem
10

Similar Publications

c-FLIP/Ku70 complex; A potential molecular target for apoptosis induction in hepatocellular carcinoma.

Arch Biochem Biophys

January 2025

Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden. Electronic address:

Hepatocellular carcinoma (HCC) is one of the most lethal malignancies worldwide and the most common form of liver cancer. Despite global efforts toward early diagnosis and effective treatments, HCC is often diagnosed at advanced stages, where conventional therapies frequently lead to resistance and/or high recurrence rates. Therefore, novel biomarkers and promising medications are urgently required.

View Article and Find Full Text PDF

HBx Facilitates Drug Resistance in Hepatocellular Carcinoma via CD133-regulated Self-renewal of Liver Cancer Stem Cells.

J Clin Transl Hepatol

January 2025

Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.

Background And Aims: Hepatitis B virus (HBV) infection contributes to hepatocellular carcinoma (HCC) tumorigenesis, drug resistance, and recurrence, although the underlying molecular mechanisms remain unclear. Recent studies suggest that HBV infection may be associated with liver cancer stem cells (LCSCs), but the exact mechanisms are yet to be resolved. In this study, we aimed to analyze the role of HBV infection in regulating the stemness of HCCs, which is closely linked to drug resistance.

View Article and Find Full Text PDF

Transarterial chemoembolisation combined with lenvatinib plus pembrolizumab versus dual placebo for unresectable, non-metastatic hepatocellular carcinoma (LEAP-012): a multicentre, randomised, double-blind, phase 3 study.

Lancet

January 2025

Mount Sinai Liver Cancer Program, Division of Liver Diseases, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Liver Cancer Translational Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain. Electronic address:

Article Synopsis
  • TACE is the standard treatment for patients with unresectable, non-metastatic hepatocellular carcinoma, and this study evaluates the effectiveness of adding lenvatinib and pembrolizumab to TACE compared to a placebo.
  • The multicenter, randomised, double-blind phase 3 study (LEAP-012) involved participants from 137 sites across 33 countries who were randomly assigned to receive either TACE with the new drugs or TACE with a placebo.
  • The primary endpoints were progression-free survival and overall survival, and the results reported are from the first interim analysis, which serves as the final analysis for progression-free survival.
View Article and Find Full Text PDF

Objective: Accumulating evidence suggests that microRNAs derived from macrophage exosomes can regulate the stemness and progression of cancer. However, the interaction mechanisms between HCC cells and tumor-associated macrophages remain unclear.

Methods: Exosomes were extracted from control or CD63 overexpression macrophages and co-cultured with HCC cells.

View Article and Find Full Text PDF

SLC35C2 promotes stemness and progression in hepatocellular carcinoma by activating lipogenesis.

Cell Signal

January 2025

Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China; Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China. Electronic address:

Metabolic reprogramming plays a critical role in tumorigenesis and progression, including hepatocellular carcinoma (HCC). The Solute Carriers (SLCs) family is responsible for the transport of a range of nutrients and has been linked to various cancers. Cancer stem cells (CSC) are a contributing factor to the recurrence and metastasis of HCC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!