In this study, surface - enhanced Raman spectroscopy (SERS) was applied at the first time for estimation of how pH, temperature, and nanoparticle (NP) stabilizer affect an adsorption behavior of erlotinib (drug approved in a non-small cell lung cancer therapy) onto citrate-stabilized silver nanoparticles (AgNPs). Novel approach to improve cancer therapy assumes application of NPs as an efficient drug delivery system. This strategy requires designing stable drug/nanocarrier conjugates that can effectively interact in the target site. It is also important to perform deeply characterization of a drug orientation on the potential carrier surface and estimation how stable the appeared interaction is. Performed analysis, indicates that pH, temperature, presence of NP stabilizers, and time of incubation have an influence on the occurring adsorption geometry of the drug. However, the observed erlotinib/AgNP interaction remains stable regardless of the applied conditions. These considerations were supported by insightful physicochemical characteristics of the AgNPs and the erlotinib/AgNP conjugates by conducting transmission electron microscopy (TEM) imaging, determination of colloid stability conducted with the use of dynamic light scattering technique (DLS) and measurements of electrophoretic mobility. Such complex approach allows a better understanding of the stability of the erlotinib/AgNP conjugates and provides information how the investigated interaction is affected by the induced perturbations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2019.117737DOI Listing

Publication Analysis

Top Keywords

adsorption behavior
8
cancer therapy
8
erlotinib/agnp conjugates
8
spectroscopic insights
4
insights temperature
4
temperature stabilizer
4
stabilizer erlotinib
4
erlotinib adsorption
4
behavior nanosurface
4
nanosurface study
4

Similar Publications

To understand xylan-cellulose interactions in softwood, the adsorption behavior of hexameric softwood xylan proxies with various substitutions was analyzed on the three surfaces of a hexagonal cellulose microfibril. The study found that all surfaces could bind xylan motifs, showing equally high affinity for the hydrophilic (110) and hydrophobic (100) surfaces and significantly lower affinity for the hydrophilic (11̅0) surface. Unsubstituted xylose hexamers had the highest affinity and most ordered adsorption structures, while substitutions generally reduced the affinity and regularity.

View Article and Find Full Text PDF

Retention mechanism in slalom chromatography: Perspectives on the characterization of large DNA and RNA biopolymers in cell and gene therapy.

J Chromatogr A

January 2025

Waters Corporation, Instrument/Core Research/Fundamental, Milford, MA, 01757, USA. Electronic address:

Significant progress has been made in the last two decades in producing small (<2μm), high-purity, and low-adsorption particles, columns and system hardware, for ultra-high pressure liquid chromatography (UHPLC). Simultaneously, the recent rapid expansion of cell and gene therapies for treating diseases necessitates novel analytical technologies for analyzing large (>2 kbp) plasmid double-stranded (ds) DNA (which encodes for the in vitro transcription (IVT) of single-stranded (ss) mRNA therapeutics) and dsRNAs (related to IVT production impurities) biopolymers. In this context, slalom chromatography (SC), a retention mode co-discovered in 1988, is being revitalized using the most advanced column technologies for improved determination of the critical quality attributes (CQAs) of such new therapeutics.

View Article and Find Full Text PDF

This study investigates simple acetylenes substituted with phenylurea as a constant H-bonding unit (Alk-R) and varied hydrophobic units (R = H, Phenyl (Ph), Phenylacetylene (PA), Ph-NMe2) to understand self-assembly properties driven by synergistic non-covalent interactions. Our observations reveal hierarchical self-assembled fibrillar networks with luminescent needles, fibers, and flowers on nano- to micro-meter scales. Subtle changes in substituents led to significant differences: H, Ph, PA, and Ph-NMe2 produced needle-like crystals, dendritic nanofibers, microflakes, and no self-assembly, respectively.

View Article and Find Full Text PDF

Structure and stability of copper nanoclusters on monolayer tungsten dichalcogenides.

Dalton Trans

January 2025

Tyndall National Institute, University College Cork, Lee Maltings, Dyke Parade, Cork, T12 R5CP, Ireland.

Layered materials, such as tungsten dichalcogenides (TMDs), are being studied for a wide range of applications, due to their unique and varied properties. Specifically, their use as either a support for low dimensional catalysts or as an ultrathin diffusion barrier in semiconductor devices interconnect structures are particularly relevant. In order to fully realise these possible applications for TMDs, understanding the interaction between metals and the monolayer they are deposited on is of utmost importance.

View Article and Find Full Text PDF

The edge structures of carbonaceous materials exhibit temperature-dependent behavior on the atomic scale, with variations in the relative ratios of zigzag, reconstructed 5-7 zigzag (ZZ57), and armchair edges observed at different temperatures. Nevertheless, the mechanisms underlying the interconversion of these edge structures and the influence of the surrounding metals remain unclear. This study investigates the reconstruction and reversible transformation processes of ZZ57 edge structures in carbon materials and examines the effects of different metal atoms (Na, K, and Ca) by using density functional theory.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!