The plastics market is dominated by fossil-based polymers, but their gradual replacement by bioplastics (e.g., polyhydroxyalkanoates) is occurring. However, recycling strategies need to be developed to truly unveil the impact of bioplastics on waste accumulation. This review provides a state of the art of recycling strategies investigated for polyhydroxyalkanoate-based polymers and proposes future research avenues. Research on mechanical and chemical recycling is dominated by the use of extrusion and pyrolysis, respectively, while that on biodegradation of polyhydroxyalkanoates is related to soil and aquatic samples, and to anaerobic digestion towards biogas production. Research gaps exist in the relationships between polymer composition and ease of use of all recycling strategies investigated. This is of utmost importance since it will influence the need for separation at the source. Therefore, research emphasis needs to be given to the area to follow the continuous improvement of the process economics towards widespread commercial production of polyhydroxyalkanoates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2019.122393 | DOI Listing |
Adv Colloid Interface Sci
January 2025
School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Institute of Environmental Engineering, Central South University, Changsha 410083, Hunan, China.
Rare earth elements (REEs) are crucial metallic resources that play an essential role in national economies and industrial production. The reclaimation of REEs from wastewater stands as a significant supplementary strategy to bolster the REEs supply. Adsorption techniques are widely recognized as environmentally friendly and sustainable methods for the separation of REEs from wastewater.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Department of Computer Science and Engineering, Sathyabama Institute of Science and Technology, Shollinganallur, Chennai, India.
Municipal waste classification is significant for effective recycling and waste management processes that involve the classification of diverse municipal waste materials such as paper, glass, plastic, and organic matter using diverse techniques. Yet, this municipal waste classification process faces several challenges, such as high computational complexity, more time consumption, and high variability in the appearance of waste caused by variations in color, type, and degradation level, which makes an inaccurate waste classification process. To overcome these challenges, this research proposes a novel Channel and Spatial Attention-Based Multiblock Convolutional Network for accurately classifying municipal waste that utilizes a unique attention mechanism for enhancing feature learning and waste classification accuracy.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory of Fire Science, University of Science and Technology of China, 443 Huangshan Road, Hefei 230027, P. R.China.
The next generation of stretchable electronics seeks to integrate superior mechanical properties with sustainability and sensing stability. Ionically conductive and liquid-free elastomers have gained recognition as promising candidates, addressing the challenges of evaporation and leakage in gel-based conductors. In this study, a sustainable polymeric deep eutectic system is synergistically integrated with amino-terminated hyperbranched polyamide-modified fibers and aluminum ions, forming a conductive supramolecular network with significant improvements in mechanical performance.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Faculty of Materials Science and Ceramics, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Kracow, Poland.
The rapid expansion of photovoltaic (PV) technology as a source of renewable energy has resulted in a significant increase in PV panel waste, creating environmental and economic challenges. A promising strategy to address these challenges is the reuse of glass waste from decommissioned PV panels as a component of cementitious materials. This review explores the potential of integrating glass waste from PV panels into cementitious materials, focusing on its impact on their mechanical, thermal, and durability properties.
View Article and Find Full Text PDFInt J Environ Res Public Health
December 2024
School of Applied Engineering and Technology, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA.
The production of plastics and associated products, including microplastics (MPs), has been surging over the past several decades and now poses a grave environmental threat. This is because when not appropriately recycled, incinerated, or disposed of in fully contained landfills, plastic waste manifests as a potent pollutant, with vast amounts finding their way into oceans annually, adversely impacting marine life and ecosystems. Additionally, research also confirms there are direct impacts from MPs on water, air, and soil, impacting ecosystem and human health.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!