AI Article Synopsis

  • Polylactic acid (PLA) is a versatile bioplastic derived from lactic acid, known for its high melting point, mechanical strength, and transparency, but its safe disposal poses environmental challenges due to its resistance to microbial degradation.
  • A method was developed to isolate rare actinomycetes with proteolytic activity, leading to the identification of four strains capable of degrading emulsified PLA.
  • Among these, the strain SNC showed the best PLA degradation capabilities, significantly eroding the polymer and achieving a weight loss of 36% within one month under mesophilic conditions.

Article Abstract

Polylactic acid (PLA), a bioplastic synthesized from lactic acid, has a broad range of applications owing to its excellent proprieties such as a high melting point, good mechanical strength, transparency, and ease of fabrication. However, the safe disposal of PLA is an emerging environmental problem: it resists microbial attack in environmental conditions, and the frequency of PLA-degrading microorganisms in soil is very low. To date, a limited number of PLA-degrading bacteria have been isolated, and most are actinomycetes. In this work, a method for the selection of rare actinomycetes with extracellular proteolytic activity was established, and the technique was used to isolate four mesophilic actinomycetes with the ability to degrade emulsified PLA in agar plates. All four strains-designated SO1.1, SO1.2, SNC, and SST-belong to the genus . The PLA-degrading capability of the four strains was investigated by testing their ability to assimilate lactic acid, fragment PLA polymers, and deteriorate PLA films. The strain SNC was the best PLA degrader-it was able to assimilate lactic acid, constitutively cleave PLA, and form a thick and widespread biofilm on PLA film. The activity of this strain extensively eroded the polymer, leading to a weight loss of 36% in one month in mesophilic conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6955660PMC
http://dx.doi.org/10.3390/microorganisms7120590DOI Listing

Publication Analysis

Top Keywords

lactic acid
12
polylactic acid
8
pla
8
assimilate lactic
8
acid
5
degradative capabilities
4
capabilities isolates
4
isolates polylactic
4
acid polylactic
4
acid pla
4

Similar Publications

A total of 640 one-day-old Cobb 500 MV × Cobb 500 FF mixed broilers were randomly assigned to one of four experimental treatments with four replicates per treatment and 40 birds per replicate for 32 days. The treatments consisted of a basal diet (control group), basal diet + 0.02% zinc bacitracin (AGP group), basal diet + 0.

View Article and Find Full Text PDF

Background/objectives: Catha edulis, commonly known as khat, is used for its psychoactive effects and is considered a natural amphetamine. The current study investigated the metabolomic profile in the cerebellum of mice after repeated exposure to khat and evaluated the effects of clavulanic acid on the metabolomic profile in the cerebellum in khat-treated mice.

Methods: Male C67BL/6 mice that were 6-9 weeks old were recruited and divided into three groups: the control group was treated with 0.

View Article and Find Full Text PDF

Background: Using dietary interventions to steer the metabolic output of the gut microbiota towards specific health-promoting metabolites is often challenging due to interpersonal variation in treatment responses.

Methods: In this study, we combined the ex vivo SIFR (Systemic Intestinal Fermentation Research) technology with untargeted metabolite profiling to investigate the impact of carrot-derived rhamnogalacturonan-I (cRG-I) on ex vivo metabolite production by the gut microbiota of 24 human adults.

Results: The findings reveal that at a dose equivalent to 1.

View Article and Find Full Text PDF

Background: is a member of the lactic acid bacterium group commonly found in many salt-fermented foods. Strains of isolated from high-salinity environments have been shown to tolerate salt stress to some extent. However, the specific responses and mechanisms of under salt stress are not fully understood.

View Article and Find Full Text PDF

Exploring sp. M21F004 for Biocontrol of Bacterial and Fungal Phytopathogens.

Mar Drugs

November 2024

Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea.

This study explores the biocontrol potential of sp. M21F004, a lactic acid bacteria (LAB) isolated from marine environments, against several bacterial and fungal phytopathogens. Out of 50 marine bacterial isolates, sp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!