Worldwide, eutrophication is threatening lake ecosystems. To support lake management numerous eutrophication models have been developed. Diverse research questions in a wide range of lake ecosystems are addressed by these models. The established models are based on three key approaches: the empirical approach that employs field surveys, the theoretical approach in which models based on first principles are tested against lab experiments, and the process-based approach that uses parameters and functions representing detailed biogeochemical processes. These approaches have led to an accumulation of field-, lab- and model-based knowledge, respectively. Linking these sources of knowledge would benefit lake management by exploiting complementary information; however, the development of a simple tool that links these approaches was hampered by their large differences in scale and complexity. Here we propose a Generically Parameterized Lake eutrophication model (GPLake) that links field-, lab- and model-based knowledge and can be used to make a first diagnosis of lake water quality. We derived GPLake from consumer-resource theory by the principle that lacustrine phytoplankton is typically limited by two resources: nutrients and light. These limitations are captured in two generic parameters that shape the nutrient to chlorophyll-a relations. Next, we parameterized GPLake, using knowledge from empirical, theoretical, and process-based approaches. GPLake generic parameters were found to scale in a comparable manner across data sources. Finally, we show that GPLake can be applied as a simple tool that provides lake managers with a first diagnosis of the limiting factor and lake water quality, using only the parameters for lake depth, residence time and current nutrient loading. With this first-order assessment, lake managers can easily assess measures such as reducing nutrient load, decreasing residence time or changing depth before spending money on field-, lab- or model- experiments to support lake management.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2019.133887DOI Listing

Publication Analysis

Top Keywords

field- lab-
16
lake
12
lab- model-based
12
model-based knowledge
12
lake management
12
generically parameterized
8
lake eutrophication
8
gplake links
8
links field-
8
lake ecosystems
8

Similar Publications

Blue Quantum Dot Light-Emitting Diodes toward Full-Color Displays: Materials, Devices, and Large-Scale Fabrication.

Nano Lett

December 2024

Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Nanoscience and Materials Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, P. R. China.

Quantum dots (QDs) light-emitting diodes (QLEDs) are gaining significant interest for the next generation of display and lighting applications because of their wide color gamut, cost-effective solution processability, and good stability. The last decades have witnessed rapid advances in improving their efficiency and lifetime. So far, among the three primary colors of QLEDs devices, the performance of blue QLEDs is considerably inferior to that of green and red ones including Cd-based and Cd-free devices, which is a key bottleneck hindering QLEDs' application.

View Article and Find Full Text PDF

Mechanism of improved cellulase production by Trichoderma reesei in water-supply solid-state fermentation.

Bioresour Technol

December 2024

Sanya Institute of Nanjing Agricultural University, Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China. Electronic address:

High production cost of cellulases limits its commercial application on lignocellulose. Solid-state fermentation (SSF) has special advantages of water and energy conservation, however, the lack of free water and water loss during fermentation limits its application. In this paper, a constructed water-supply SSF was used to improve carboxymethyl cellulose activity and filter paper activity of 1.

View Article and Find Full Text PDF

A Novel Dual Cross-linking Reagent for Dentin Bonding Interface Stability.

J Dent Res

December 2024

State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China.

The cross-linking reagent has been proposed as a means of modifying dentin collagen, inhibiting matrix metalloproteinase activities, and enhancing bond durability during dentin bonding procedures. This study aimed to synthesize an operation-friendly dual cross-linking reagent-3-(4-formyphenoxy)-2-hydroxypropyl methacrylate (FPA)-to assess its ability to cross-link dentin collagen and reduce enzymatic activity at the bonding interface. Cytotoxicity was evaluated by a cell counting kit-8 test and calcein AM/propidium iodide assay.

View Article and Find Full Text PDF

This study focuses on improving the performance of steady-state visual evoked potential (SSVEP) in brain-computer interfaces (BCIs) for robotic control systems. The challenge lies in effectively reducing the impact of artifacts on raw data to enhance the performance both in quality and reliability. The proposed MVMD-MSI algorithm combines the advantages of multivariate variational mode decomposition (MVMD) and multivariate synchronization index (MSI).

View Article and Find Full Text PDF

The prediction of the remaining useful life (RUL) holds significant importance within the field of prognostics and health management (PHM), which may provide lifetime information about the system. The foundation for effectively estimating RUL is constructing an applicable degradation model for the system. However, the majority of existing degradation models only consider the issue of age dependence and disregard state dependence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!