It is well known that existing protected areas (PAs) should function as focal areas for expanding PA systems. The optimal complementary conservation areas are often identified by implementing two approaches in systematic conservation planning, i.e., unlocking or locking existing PAs. However, evidence-based studies are lacking for clarifying the efficiencies of these two planning approaches. With Sichuan in southwest China - part of a global biodiversity hotspot - as one case, this study first assessed the ecological representativeness of existing nature reserves (NRs). Using 32 natural vegetation types as the conservation features, we then implemented a systematic conservation planning process by running Marxan software with NR-unlocked and NR-locked scenarios. A human disturbance index was also included as a penalty function in Marxan for achieving cost-effective planning. We finally investigated the efficiencies of the unlocking and locking planning approaches by comparing the outcomes of the NR-unlocked and NR-locked scenarios. We found that existing NRs were geographically biased towards the western mountainous regions with high elevations and low human disturbance levels. For achieving the same quantitative conservation targets, the total area of the NR-locked priority conservation areas was 18.6% larger than that of the NR-unlocked areas, whereas the area of NR-locked complementary areas to existing NRs was 15.3% smaller than that of NR-unlocked ones. Moreover, the NR-locked priority conservation areas had higher ecological representativeness than NR-unlocked areas. The results suggest that if a completely new PA system is to be established without considering existing PAs, the unlocking approach could more efficiently achieve the full conservation targets at lower costs of land area and with better connected habitats. When existing PAs must be used as focal areas for expansion, the locking approach is more cost-effective for filling conservation gaps by requiring smaller amounts of complementary areas. Our analysis provides evidence-based support for expanding the current PA systems in a cost-effective manner.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2019.133771 | DOI Listing |
RNA
December 2024
Instiute of Bioorganic Chemistry PAS
In this article, we present an approach to maximizing the splicing regulatory properties of splice-switching oligonucleotide (SSO) designed to regulate alternative splicing of PKM pre-mRNA. The studied SSO interacts with the regulatory element in exon 10 of PKM pre-mRNA and contributes to a significant reduction of PKM2 level with a simultaneous increase of the PKM1 isoform. This SSO forms a duplex not only with the regulatory fragment of exon 10 but also with a similar RNA fragment of intron 9.
View Article and Find Full Text PDFJ Appl Biomech
January 2025
College of Medicine, The Pennsylvania State University, Hershey, PA, USA.
PLoS One
December 2024
Faculty of Rehabilitation Sciences, REVAL Rehabilitation Research Center, Hasselt University, Hasselt, Belgium.
The use of auditory stimuli in rehabilitation to target walking has been evidenced in persons with neurological conditions. The methodologies focus on the synchronisation of persons' steps to auditory stimuli showing that the type of stimuli and tempi significantly affect the synchronisation. However, the dynamic of the interaction over time between the motor system and the auditory stimuli, i.
View Article and Find Full Text PDFJACS Au
November 2024
College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
The development of chiroptical molecular switches for chiral sensing, data communication, optical displays, chiral logic gates, and asymmetric catalysis is currently a vibrant frontier of science and technology. Herein, we report a practical artificial dynamic system based on a 1,2-diaxial atropisomer. Organocatalytic parallel kinetic resolution allows the divergent synthesis of two sets of stereoisomers with vicinal C-C and N-N axes from the same racemic single-axis substrates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!