Antioxidative system of Deinococcus radiodurans.

Res Microbiol

Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, 421001, China; Hengyang Key Laboratory for Biological Effects of Nuclear Radiation, University of South China, Hengyang, 421001, China. Electronic address:

Published: March 2020

Deinococcus radiodurans is famous for its extreme resistance to various stresses such as ionizing radiation (IR), desiccation and oxidative stress. The underlying mechanism of exceptional resistance of this robust bacterium still remained unclear. However, the antioxidative system of D. radiodurans has been considered to be the determinant factor for its unparalleled resistance and protects the proteome during stress, then the DNA repair system and metabolic system exert their functions to restore the cell to normal physiological state. The antioxidative system not only equipped with the common reactive oxygen species (ROS) scavenging enzymes (e.g., catalase and superoxide dismutase) but also armed with a variety of non-enzyme antioxidants (e.g., carotenoids and manganese species). And the small manganese complexes play an important role in the antioxidative system of D. radiodurans. Recent studies have characterized several regulators (e.g., PprI and PprM) in D. radiodurans, which play critical roles in the protection of the bacteria from various stresses. In this review, we offer a panorama of the progress regarding the characteristics of the antioxidative system in D. radiodurans and its application in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.resmic.2019.11.002DOI Listing

Publication Analysis

Top Keywords

antioxidative system
20
deinococcus radiodurans
8
system d radiodurans
8
system
6
antioxidative
5
system deinococcus
4
radiodurans deinococcus
4
radiodurans famous
4
famous extreme
4
extreme resistance
4

Similar Publications

Aquatic biomass, particularly microalgae and duckweed, presents a promising and sustainable alternative source of plant-based protein and bioactive compounds for food and feed applications. This review highlights the nutritional potential of these aquatic species, focusing on their high protein content, rapid growth rates, and adaptability to nonarable environments. Microalgae, such as and spp.

View Article and Find Full Text PDF

Nonunion is a significant complication in fracture management for surgeons. Salvianolic acid A (SAA), derived from the traditional Chinese plant Salviae miltiorrhizae Bunge (Danshen), exhibits notable anti-inflammatory and antioxidant properties. Although studies have demonstrated its ability to promote osteogenic differentiation, the exact mechanism of action remains unclear.

View Article and Find Full Text PDF

Drought stress inhibits Bunge () seedling growth and yield. Here, we studied the effects of drought stress on the different parts of seedlings through physiological, transcriptomic, and metabolomics analyses, and identified key genes and metabolites related to drought tolerance. Physiological analysis showed that drought stress increased the accumulation of hydrogen peroxide (HO), enhanced the activity of peroxidase (POD), decreased the activity of catalase (CAT) and the contents of chlorophyll b and total chlorophyll, reduced the degree of photosynthesis, enhanced oxidative damage in seedlings, and inhibited the growth of plants.

View Article and Find Full Text PDF

Exploring the noncovalent interaction between β-lactoglobulin and flavonoids under nonthermal process: Characterization, physicochemical properties, and potential for lycopene delivering.

Food Chem X

January 2025

Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China.

The poor structure stability and low bioavailability of lycopene (LY) hampers the wide application in food field. Thus, it is crucial to explore novel deliver carrier for LY based on protein-flavonoid complexes. In this study, the noncovalent interaction mechanism between β-lactoglobulin (β-LG) and flavonoids (apigenin (API), luteolin (LUT), myricetin (MY), apigenin-7-O-glucoside, luteolin-7-O-glucoside, and myricetrin) under ultrasound treatment was explored.

View Article and Find Full Text PDF

Background: The complement system is locally activated after joint injuries and leads to the deposition of the terminal complement complex (TCC). Sublytic TCC deposition is associated with phenotypical alterations of human articular chondrocytes (hAC) and enhanced release of inflammatory cytokines. Chronic inflammation is a known driver of chondrosenescence in osteoarthritis (OA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!