Peniterester, a carotane-type antibacterial sesquiterpene from an artificial mutant Penicillium sp. T2-M20.

Fitoterapia

Key Laboratory of Functional Molecules Analysis and Biotransformation of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China. Electronic address:

Published: January 2020

Peniterester (1), a new tricyclic sesquiterpene, together with 6 known compounds (2-7) were isolated from the secondary metabolites of an artificial mutant Penicillium sp. T2-M20 which was obtained from the parental strain Penicillium sp. T2-8 via UV irradiation as well as nitrosoguanidine (NTG) induction. Peniterester was only produced by the mutant T2-M20 on the basis of LC-MS analysis. Meanwhile, the results of in vitro bioactivities screening indicated that peniterester owned obvious antibacterial activities against Bacillus subtilis, Escherichia coli and Staphylococcus aureus with MICs of 8.0, 8.0 and 4.0 μg/mL, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fitote.2019.104422DOI Listing

Publication Analysis

Top Keywords

artificial mutant
8
mutant penicillium
8
penicillium t2-m20
8
peniterester
4
peniterester carotane-type
4
carotane-type antibacterial
4
antibacterial sesquiterpene
4
sesquiterpene artificial
4
t2-m20 peniterester
4
peniterester tricyclic
4

Similar Publications

Background: Although higher-generation TKIs are associated with improved progression-free survival in advanced NSCLC patients with EGFR mutations, the optimal selection of TKI treatment remains uncertain. To address this gap, we developed a web application powered by a reinforcement learning (RL) algorithm to assist in guiding initial TKI treatment decisions.

Methods: Clinical and mutational data from advanced NSCLC patients were retrospectively collected from 14 medical centers.

View Article and Find Full Text PDF

Construction of P450 scaffold biocatalysts for the biodegradation of five chloroanilines.

J Hazard Mater

January 2025

State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266071, China. Electronic address:

Chloroanilines represent a class of persistent and highly toxic environmental pollutants, posing significant challenges for green remediation strategies. While P450BM3 monooxygenases are renowned for their ability to catalyze the monooxidation of inert C-H bonds, costly NAD(P)H and complex electron transport systems required for P450BM3 catalysis limit their practical applications. This study pioneers the development of innovative artificial biocatalysts by strategically engineering the active site of P450BM3.

View Article and Find Full Text PDF

The latest World Health Organization (WHO) classification of central nervous system tumors (WHO2021/5th) has incorporated molecular information into the diagnosis of each brain tumor type including diffuse glioma. Therefore, an artificial intelligence (AI) framework for learning histological patterns and predicting important genetic events would be useful for future studies and applications. Using the concept of multiple-instance learning, we developed an AI framework named GLioma Image-level and Slide-level gene Predictor (GLISP) to predict nine genetic abnormalities in hematoxylin and eosin sections: , , mutations, promoter mutations, homozygous deletion (CHD), amplification (amp), 7 gain/10 loss (7+/10-), 1p/19q co-deletion, and promoter methylation.

View Article and Find Full Text PDF

Soil bacteria are prolific producers of a myriad of biologically active secondary metabolites. These natural products play key roles in modern society, finding use as anti-cancer agents, as food additives, and as alternatives to chemical pesticides. As for their original role in interbacterial communication, secondary metabolites have been extensively studied under in vitro conditions, revealing many roles including antagonism, effects on motility, niche colonization, signaling, and cellular differentiation.

View Article and Find Full Text PDF

BRAF mutations drive initiation and progression of various tumors. While BRAF inhibitors are effective in BRAF-mutant melanoma patients, intrinsic or acquired resistance to these therapies is common. Here, we identify non-receptor-type protein tyrosine phosphatase 23 (PTPN23) as an alternative effective target in BRAF-mutant cancer cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!