A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Exploring Protein Structures by DNP-Enhanced Methyl Solid-State NMR Spectroscopy. | LitMetric

AI Article Synopsis

  • The text discusses advancements in sensitivity-enhanced solid-state NMR (ssNMR) spectroscopy using dynamic nuclear polarization (DNP), highlighting the need for further improvements in methodology.
  • A new toolkit focusing on methyl groups is introduced, which integrates various techniques to enhance NMR signal and analyze protein structures effectively.
  • The application of this toolkit is demonstrated on the membrane protein green proteorhodopsin (GPR), providing insights into its functional mechanisms during the initial phase of its photocycle.

Article Abstract

Although the rapid development of sensitivity-enhanced solid-state NMR (ssNMR) spectroscopy based on dynamic nuclear polarization (DNP) has enabled a broad range of novel applications in material and life sciences, further methodological improvements are needed to unleash the full potential of DNP-ssNMR. Here, a new methyl-based toolkit for exploring protein structures is presented, which combines signal-enhancement by DNP with heteronuclear Overhauser effect (hetNOE), carbon-carbon-spin diffusion (SD) and strategically designed isotope-labeling schemes. It is demonstrated that within this framework, methyl groups can serve as dynamic sensors for probing local molecular packing within proteins. Furthermore, they can be used as "NMR torches" to selectively enlighten their molecular environment, e.g., to selectively enhance the polarization of nuclei within residues of ligand-binding pockets. Finally, the use of C-C spin diffusion enables probing carbon-carbon distances within the subnanometer range, which bridges the gap between conventional C-ssNMR methods and EPR spectroscopy. The applicability of these methods is directly shown on a large membrane protein, the light-driven proton pump green proteorhodopsin (GPR), which offers new insight into the functional mechanism of the early step of its photocycle.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.9b11195DOI Listing

Publication Analysis

Top Keywords

exploring protein
8
protein structures
8
solid-state nmr
8
structures dnp-enhanced
4
dnp-enhanced methyl
4
methyl solid-state
4
nmr spectroscopy
4
spectroscopy rapid
4
rapid development
4
development sensitivity-enhanced
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!