Adaptation of Mammalian Cells to Chemically Defined Media.

Curr Protoc Toxicol

Department of Science and Technology, Science and Technology Institute, Federal University of São Paulo (UNIFESP), São José dos Campos, São Paulo, Brazil.

Published: December 2019

In order to circumvent ethical, technical, and economic drawbacks regarding the use of animal serum in cell culturing, it is possible to adapt mammalian cells to serum-free media. Nowadays, there are several serum-free formulations available, including fully animal derived-free and chemically defined media, and different adaptation techniques. This article focuses on the gradual adaptation of a mammalian suspension cell culture to a chemically defined medium. The first step is to transfer the cells cultured in medium supplemented with fetal bovine serum (FBS) to a chemically defined medium of your choice, containing the same amount of FBS. The next steps consist of progressively reducing the amount of FBS, while monitoring cell growth and viability up to the complete elimination of FBS. This protocol has been successfully used to adapt THP-1 cells to a chemically defined medium with similar maximum specific growth rate as those cultured with FBS. © 2019 by John Wiley & Sons, Inc. Basic Protocol: Gradual adaptation to chemically defined medium Alternate Protocol: Direct adaptation to chemically defined medium Support Protocol 1: Determining maximum specific growth rate of a cell culture Support Protocol 2: Cell freezing and thawing.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cptx.88DOI Listing

Publication Analysis

Top Keywords

chemically defined
28
defined medium
20
adaptation mammalian
8
mammalian cells
8
cells chemically
8
defined media
8
gradual adaptation
8
cell culture
8
amount fbs
8
maximum specific
8

Similar Publications

Fabrication of composite ceramic polymeric membranes for agricultural wastewater treatment.

Sci Rep

January 2025

Chemical Engineering and Pilot Plant Department, Engineering & Renewable Energy Research Institute, National Research Centre (NRC), Giza, 12622, Egypt.

Humans have contaminated water supplies with harmful compounds, including different heavy metals. Heavy metals can interfere with human and animal vital organs and metabolic processes. They are also persistent and bioaccumulative.

View Article and Find Full Text PDF

There are several studies that announce the inhibitory behavior of this sort of substance to strengthen the shield of metals, which is one of the positive benefits of green inhibitors. In the current investigation, Araucaria heterophylla studied as a green corrosion inhibitor to avert the mild steel during the acidic cleaning. The examination of this plant's ability to control corrosion at different concentrations in the acidic solution used certain expert measures.

View Article and Find Full Text PDF

The regulation of artificial interphase for advanced Zn anode is an effective solution to achieve superior electrochemical performance for aqueous batteries. However, the deployment of atomically precise architectures and ligand engineering to achieve functionalization-oriented regulatory screening is lacking, which is hindered by higher requirements for synthetic chemistry and structural chemistry. Herein, we have first performed ligand engineering which selected zinc ion trapping ligands (-CH3) based on the coordination effect, and zinc substrate binding ligands (-N=N-xC6H5) based on the electrostatic interaction.

View Article and Find Full Text PDF

Enhancing Catalytic Removal of Autoexhaust Soot Particles via the Modulation of Interfacial Oxygen Vacancies in Cu/CeO Catalysts.

Environ Sci Technol

January 2025

State Key Laboratory of Heavy Oil Processing, Key Laboratory of Optical Detection Technology for Oil and Gas, College of Science, China University of Petroleum, Beijing 102249, PR China.

The purification efficiency of autoexhaust carbon strongly depends on the heterogeneous interface structure between active metal and oxide, which can modulate the local electronic structure of defect sites to promote the activation of reactant molecules. Herein, the high-dispersion CuO clusters supported on the well-defined CeO nanorods were prepared using the complex deposition slow method. The formation of heteroatomic Cu-O-Ce interfacial structural units as active sites can capture electrons to achieve activation of the NO and O molecules.

View Article and Find Full Text PDF

The inherent heterogeneity, poor compatibility with polymers, and dark color of lignin limit its application in composites. In this study, original lignin (OL) was fractionated sequentially using four green organic solvents to obtain lignin fractions with different chemical structures. These well-defined lignin fractions were then blended with polybutylene succinate (PBS) to fabricate biocomposites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!