Formulating and Retaining the Structure of Polymerized Surfactant Phases Using a Microemulsion Curvature Framework.

Langmuir

Department of Chemical Engineering and Applied Chemistry , University of Toronto, Toronto M5S3E5 , Ontario , Canada.

Published: December 2019

Nanostructured polymers contain features smaller than 100 nm that are useful in a wide range of areas, including photonics, biomedical materials, and environmental applications. Out of the myriad of nanostructured polymers, surfactant-templated polymers are versatile because of their ability to have tunable domain sizes, structure, and composition. This work addresses the gap between the formulation with industrial-grade polymerizable surfactants and the final structure of the polymer, using the hydrophilic-lipophilic difference (HLD) and net-average curvature (NAC) frameworks. HLD indicates the proximity of the formulation (surfactant and oil monomer selection, temperature, electrolyte concentration) to the phase inversion point, where HLD = 0. NAC uses the HLD to determine the curvature of the surfactant-oil-water interface, leading not only to the size and shape of micelles and bicontinuous isotropic (L) systems but also to defining the most likely regions for lyotropic liquid crystal (LLC) existence and phase separation in ternary phase diagrams. Polymerizing LLC fluids produced nanostructured polymers with similar LLC structures that were highly swellable, but with low compressive strength. Polymerizing L fluids produced strong, but less water-swellable nanostructured polymers with a similar characteristic length to the parent L microemulsion. The relatively small scale of the parent LLC (∼6-8 nm) or L (∼3-4 nm) systems is consistent with the translucent nature of the polymers produced and the HLD-NAC predicted sizes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.9b02822DOI Listing

Publication Analysis

Top Keywords

nanostructured polymers
16
fluids produced
8
polymers
6
formulating retaining
4
retaining structure
4
structure polymerized
4
polymerized surfactant
4
surfactant phases
4
phases microemulsion
4
microemulsion curvature
4

Similar Publications

Tailored Nucleation-Growth Strategy for Precise Self-assembly of Block Copolymers.

Chemistry

January 2025

Beijing Institute of Technology, Polymer Materials, 5 Zhongguancun Nandajie, 100081, Beijing, CHINA.

The self-assembly of block copolymers (BCPs) to form nanostructures of various morphologies and controllable dimensions has been a very promising research area in nanotechnology in recent decades. This review mainly summarizes the recent advances in precise and controllable self-assembly of BCPs through a tailored nucleation-growth strategy to modulate the self-assembly behavior of the BCPs. These efforts have led to a better understanding of the self-assembly mechanisms and opened new possibilities for creating novel materials with designable properties.

View Article and Find Full Text PDF

Carbon quantum dot-anchored polyaniline on electrospun carbon nanofibers as freestanding electrodes for symmetric solid-state supercapacitors.

Dalton Trans

January 2025

Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, People's Republic of China.

A binder-free and freestanding electrode was designed by uniformly immobilizing carbon quantum dot (CQD)-anchored polyaniline (PANI) heterostructures onto electrospun carbon nanofibers (CNFs) a facile hierarchical assembly process. The fabricated freestanding CNF/PANI/CQD electrode exhibits a unique three-dimensional (3D) network nanostructure, which accelerates ion migration between the interior and surface of the electrode, thereby enhancing its charging and discharging performance. Moreover, the functional groups on the surface of CQDs could anchor PANI through possible chemical bonding, which not only improves the stability of the PANI/CQD heterojunction but also creates an additional conductive channel for the PANI polymer.

View Article and Find Full Text PDF

Background: In clinical practice, imiquimod is used to treat Human Papillomavirus (HPV)-related lesions, such as condyloma and Cervical Intraepithelial Neoplasia (CIN). Metronidazole is the most commonly prescribed antibiotic for bacterial vaginosis. The study developed biodegradable imiquimod- and metronidazole-loaded nanofibrous mats and assessed their effectiveness for the topical treatment of cervical cancer, a type of HPV-related lesion.

View Article and Find Full Text PDF

Background: Regenerating periodontal ligament (PDL) tissue is a vital challenge in dentistry that aims to restore periodontal function and aesthetics. This study explores a tissue engineering strategy that combines polycaprolactone (PCL)/collagen/cellulose acetate electrospun scaffolds with collagen hydrogels to deliver curcumin-loaded ZIF-8 nanoparticles fand periodontal ligament stem cells (PDLSCs).

Methods: Scaffolds were fabricated via electrospinningand collagen hydrogels incorporated PDLSCs and curcumin-loaded ZIF-8 nanoparticles (CURZIF-8) were developed using cross-linking.

View Article and Find Full Text PDF

Introduction: Wound treatment is a significant health burden in any healthcare system, which requires proper management to minimize pain and prevent bacterial infections that can complicate the wound healing process.

Rationale: There is a need to develop innovative therapies to accelerate wound healing cost-effectively. Herein, two polymer-based nanofibrous systems were developed using poly-lactic-co-glycolic-acid (PLGA) and polyvinylpyrrolidone (PVP) loaded with a combination of an antibiotic (Fusidic acid, FA) and a local anesthetic (Lidocaine, LDC) via electrospinning technique for an expedited healing process by preventing bacterial infections while reducing the pain sensation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!