Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The realization of printed organic solar cells (OSCs) as a commercial technology is dependent on the development of high-performance photovoltaic materials suitable for large-scale device manufacture. In this study, the design, synthesis, and characterization of a series of A-D-A'-D-A-type molecular acceptors based on indacenodithienothiophene (IDTT) and thiophene-flanked 2,1,3-benzothiadiazole (DTBT) are reported. The synthesized molecular acceptors showed broader absorption ranges and narrower band gap energies than those of well-known 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno [2,3-:2',3'-']--indaceno[1,2-:5,6-']dithiophene (ITIC)-based molecular acceptors. Furthermore, the synthesized acceptors could tune the frontier molecular orbital energy levels, dipole moments, and their crystallinities by introducing fluorine (F) atoms and cyano (CN) groups on DTBT as a core A' unit. The cyano-substituted DTBT-based molecular acceptor (CNDTBT-IDTT-FINCN) showed a strong molar absorptivity and dipole moment, high hole/electron charge mobilities, and a favorable face-on orientation using films blended with poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)-benzo[1,2-:4,5-']dithiophene))--(5,5-(1',3'-di-2-thienyl-5',7'-bis(2-ethylhexyl)benzo[1',2'-:4',5'-']dithiophene-4,8-dione)] (PBDB-T). An inverted organic photovoltaic (OPV) device using CNDTBT-IDTT-FINCN exhibits a power conversion efficiency (PCE) of 9.13% when using PBDB-T as a donor material in small cells (0.12 cm). Sub-module devices with an active area of 55.45 cm are fabricated using bar-coating and exhibit PCEs of up to 7.50%. This demonstration of a high-efficiency large-area device makes CNDTBT-IDTT-FINCN a suitable and promising candidate for printed OPV devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.9b15247 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!