A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Boston Ivy Disk-Inspired Pressure-Mediated Adhesive Film Patches. | LitMetric

Boston Ivy Disk-Inspired Pressure-Mediated Adhesive Film Patches.

Small

Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea.

Published: March 2020

Boston ivy (Parthenocissus tricuspidata) climbs brick walls using its tendril disks, which excrete a sticky substance to perform binding and attachment. While the cellular structures and adhesive substances involved have been identified for decades, their practical applicability as an adhesive has not yet been demonstrated. A Boston ivy disk-inspired adhesive film patch system is reported in which structural and compositional features of the Boston ivy disk are mimicked with a form of thin adhesive film patches. In analogy to the sticky disk of a mature ivy in which porous microchannels are occupied by catechol-containing microgranules on the bound site, 3,4-dihydroxylphenylalanine bolaamphiphile nanoparticle (DOPA-C7 NP)-coated alginate microgels are two-dimensionally positioned into the cylindrical holes that are periodically micropatterned on the flexible stencil film. Finally, it is demonstrated that the pressurization of the patch breaks the microgels filled in the holes, releasing the polysaccharides and leading to crosslinking with DOPA-C7 NPs via ligandation with combined Ca and Fe ions, thus enabling development of a pressure-mediated adhesion technology.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.201904282DOI Listing

Publication Analysis

Top Keywords

boston ivy
16
adhesive film
12
ivy disk-inspired
8
film patches
8
adhesive
5
boston
4
disk-inspired pressure-mediated
4
pressure-mediated adhesive
4
film
4
patches boston
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!