CYP26B1 declines postnatally in Sertoli cells independently of androgen action in the mouse testis.

Mol Reprod Dev

Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina.

Published: January 2020

Meiosis begins at puberty and relies on several factors, including androgens and retinoic acid in the mouse testis. CYP26B1 degrades retinoic acid in the testis during prenatal development preventing meiosis initiation. Given the concurrence of meiotic entry and completion of Sertoli cell maturation in response to androgens at puberty in the mouse, we proposed that CYP26B1 is downregulated by androgens in the Sertoli cell during this period. By immunohistochemistry, we showed that CYP26B1 declines in Sertoli cells after birth. However, luciferase reporter assays and quantitative reverse transcription-polymerase chain reaction performed in the prepubertal mouse Sertoli cell line SMAT1 revealed no changes in Cyp26b1 expression in response to androgen treatment. Furthermore, studies carried out using primary Sertoli cells of 10-day-old mice showed no changes in either Cyp26b1 or CYP26B1 expression in response to androgen treatment. In summary, the hereby reported decline in CYP26B1 expression in Sertoli cells towards pubertal onset does not appear to be caused by a direct inhibitory effect of androgens on Sertoli cells in the mouse.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mrd.23302DOI Listing

Publication Analysis

Top Keywords

sertoli cells
20
sertoli cell
12
cyp26b1 expression
12
cyp26b1
8
cyp26b1 declines
8
sertoli
8
mouse testis
8
retinoic acid
8
androgens sertoli
8
changes cyp26b1
8

Similar Publications

Background: During mammalian spermatogenesis, the cytoskeleton system plays a significant role in morphological changes. Male infertility such as non-obstructive azoospermia (NOA) might be explained by studies of the cytoskeletal system during spermatogenesis.

Methods: The cytoskeleton, scaffold, and actin-binding genes were analyzed by microarray and bioinformatics (771 spermatogenic cellsgenes and 774 Sertoli cell genes).

View Article and Find Full Text PDF

Background: Transgender and gender diverse (TGD) people seek gender-affirming care at any age to manage gender identities or expressions that differ from their birth gender. Gender-affirming hormone treatment (GAHT) and gender-affirming surgery may alter reproductive function and/or anatomy, limiting future reproductive options to varying degrees, if individuals desire to either give birth or become a biological parent.

Objective And Rationale: TGD people increasingly pursue help for their reproductive questions, including fertility, fertility preservation, active desire for children, and future options.

View Article and Find Full Text PDF

Transcriptional Profiling of Testis Development in Pre-Sexually-Mature Hezuo Pig.

Curr Issues Mol Biol

December 2024

College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.

Spermatogenesis is an advanced biological process, relying on intricate interactions between somatic and germ cells in testes. Investigating various cell types is challenging because of cellular heterogeneity. Single-cell RNA sequencing (scRNA-seq) offers a method to analyze cellular heterogeneity.

View Article and Find Full Text PDF

Phosphodiesterases, particularly the type 5 isoform (PDE5), have gained recognition as pivotal regulators of male reproductive physiology, exerting significant influence on testicular function, sperm maturation, and overall fertility potential. Over the past several decades, investigations have expanded beyond the original therapeutic intent of PDE5 inhibitors for erectile dysfunction, exploring their broader reproductive implications. This narrative review integrates current evidence from in vitro studies, animal models, and clinical research to clarify the roles of PDEs in effecting the male reproductive tract, with an emphasis on the mechanistic pathways underlying cyclic nucleotide signaling, the cellular specificity of PDE isoform expression, and the effects of PDE5 inhibitors on Leydig and Sertoli cell functions.

View Article and Find Full Text PDF

Multi-omics analysis and experimental verification reveal testicular fatty acid metabolism disorder in non-obstructive azoospermia.

Zool Res

January 2025

Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210000, China.

Increasing evidence implicates disruptions in testicular fatty acid metabolism as a contributing factor in non-obstructive azoospermia (NOA), a severe form of male infertility. However, the precise mechanisms linking fatty acid metabolism to NOA pathogenesis have not yet been fully elucidated. Multi-omics analyses, including microarray analysis, single-cell RNA sequencing (scRNA-seq), and metabolomics, were utilized to investigate disruptions in fatty acid metabolism associated with NOA using data from public databases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!