Ligands with Two Monoanionic N,N-Binding Sites: Synthesis and Coordination Chemistry.

Chemistry

Junior Professorship Inorganic Chemistry of Catalysis, Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Humboldtstrasse 8, 07743, Jena, Germany.

Published: February 2020

Polytopic ligands have become ubiquitous in coordination chemistry because they grant access to a variety of mono- and polynuclear complexes of transition metals as well as rare-earth and main-group elements. Nitrogen-based ditopic ligands, in which two monoanionic N,N-binding sites are framed within one molecule, are of particular importance and are therefore the primary focus of this review. In detail, bis(amidine)s, bis(guanidine)s, bis(β-diimine)s, bis(aminotroponimine)s, bis(pyrrolimine)s, and miscellaneous bis(N,N-chelating) ligands are reviewed. In addition to the general synthetic protocols, the application of these ligands is discussed along with their coordination chemistry, the multifarious binding modes, and the ability of these ligands to bridge two (or more) metal(loids).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7064907PMC
http://dx.doi.org/10.1002/chem.201903442DOI Listing

Publication Analysis

Top Keywords

coordination chemistry
12
ligands monoanionic
8
monoanionic nn-binding
8
nn-binding sites
8
ligands
6
sites synthesis
4
synthesis coordination
4
chemistry polytopic
4
polytopic ligands
4
ligands ubiquitous
4

Similar Publications

This study investigates the electrochemical degradation mechanisms of nickel-salen (NiSalen) polymers, with a focus on improving the material's stability in supercapacitor applications. We analyzed the effects of steric hindrance near the nickel center by incorporating different bulky substituents into NiSalen complexes, aiming to mitigate water-induced degradation. Electrochemical performance was assessed using cyclic voltammetry, operando conductance, and impedance measurements, while X-ray photoelectron spectroscopy (XPS) provided insights into molecular degradation pathways.

View Article and Find Full Text PDF

Risk of lung damage from inhaled chemicals or substances has long been assessed using animal models. However, New Approach Methodologies (NAMs) that replace, reduce, and/or refine the use of animals in safety testing such as 2D and 3D cultures are increasingly being used to understand human-relevant toxicity responses and for the assessment of hazard identification. Here we review 2D and 3D lung models in terms of their application for inhalation toxicity assessment.

View Article and Find Full Text PDF

Phytochemical and Biological Investigations of Crude Extracts of .

Pharmaceuticals (Basel)

December 2024

Department of Analytical Chemistry, Faculty of Pharmacy, Afyonkarahisar Health Sciences University, TR-03100 Afyonkarahisar, Turkey.

: L. is a genus of the Fabaceae family, encompassing over 3000 species globally, with 380 species found in Turkey. This is the inaugural examination of the phytochemical, antioxidant, antibacterial, and cytotoxic properties of .

View Article and Find Full Text PDF

Morphological and Chemical Changes in the Hemolymph of the Wax Moth Infected by the Entomopathogenic Fungus .

Pathogens

January 2025

Laboratory of Analysis of Natural Compounds, Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland.

Hemolymph enables communication between organs in insects and ensures necessary coordination and homeostasis. Its composition can provide important information about the physiological state of an insect and can have diagnostic significance, which might be particularly important in the case of harmful insects subjected to biological control. Linnaeus 1758 (Lepidoptera: Pyralidae) is a global pest to honey bee colonies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!