Thermodynamics of amyloid fibril formation from chemical depolymerization.

Phys Chem Chem Phys

Institut for Physical Biology, Heinrich-Heine-Universitaet Duesseldorf, Universitaetstrasse 1, Duesseldorf, Germany.

Published: December 2019

Amyloid fibrils are homo-molecular protein polymers that play an important role in disease and biological function. While much is known about their kinetics and mechanisms of formation, the origin and magnitude of their thermodynamic stability has received significantly less attention. This is despite the fact that the thermodynamic stability of amyloid fibrils is an important determinant of their lifetimes and processing in vivo. Here we use depolymerization by chemical denaturants of amyloid fibrils of two different proteins (PI3K-SH3 and glucagon) at different concentrations and show that the previously applied isodesmic linear polymerization model is an oversimplification that does not capture the concentration dependence of chemical depolymerization of amyloid fibrils. We show that cooperative polymerization, which is compatible with the picture of amyloid formation as a nucleated polymerization process, is able to quantitatively describe the thermodynamic data. We use this combined experimental and conceptual framework in order to probe the ionic strength dependence of amyloid fibril stability. In combination with previously published data on the ionic strength dependence of amyloid fibril growth kinetics, our results provide strong evidence for the product-like nature of the transition state of amyloid fibril growth.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9cp04524dDOI Listing

Publication Analysis

Top Keywords

amyloid fibril
16
amyloid fibrils
16
chemical depolymerization
8
amyloid
8
depolymerization amyloid
8
thermodynamic stability
8
ionic strength
8
strength dependence
8
dependence amyloid
8
fibril growth
8

Similar Publications

MicroRNAs (miRNAs) are associated with amyloid-β (Aβ) dysmetabolism, a pivotal factor in the pathogenesis of Alzheimer's disease (AD). This study unveiled a novel miRNA, microRNA-32533 (miR-32533), featuring a distinctive base sequence identified through RNA sequencing of the APPswe/PSEN1dE9 (APP/PS1) mouse brain. Its role and underlying mechanisms were subsequently explored.

View Article and Find Full Text PDF

Scope: Alzheimer's disease (AD) is the most prevalent form of dementia, lack of effective therapeutic interventions. In this study, we investigate the impact of intermittent fasting (IF), an alternative strategy of calorie restriction, on cognitive functions and AD-like pathology in a transgenic mouse model of AD.

Methods And Results: APP/PS1 mice at 6 months were randomly allocated to two dietary groups: one receiving ad libitum (AL) feeding and the other undergoing IF for 1 month.

View Article and Find Full Text PDF

Identification and characterization of spontaneous AA amyloidosis in CD-1 mice used in toxicity studies: implications of SAA1 and SAA2 copy number variations.

J Toxicol Pathol

January 2025

Laboratory of Veterinary Pathology, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara-shi, Kanagawa 252-5201, Japan.

Amyloidosis is characterized by the extracellular deposition of insoluble protein fibrils that cause cellular damage and dysfunction in organs and tissues. Multiple types of amyloidosis and their causative precursor proteins have been identified in humans and animals. In toxicological studies, a high incidence of spontaneous amyloidosis has been reported in CD-1 mice; however, the precursor protein responsible remains unclear.

View Article and Find Full Text PDF

Capturing the micro-communities: Insights into biogenesis and architecture of bacterial biofilms.

BBA Adv

December 2024

Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, NH 65, Nagaur Road, Karwar, Rajasthan 342037, India.

Biofilm is an assemblage of microorganisms embedded within the extracellular matrix that provides mechanical stability, nutrient absorption, antimicrobial resistance, cell-cell interactions, and defence against host immune system. Various biomolecules such as lipids, carbohydrates, protein polymers (amyloid), and eDNA are present in the matrix playing significant role in determining the distinctive properties of biofilm. The formation of biofilms contributes to resistance against antimicrobial therapy in most of the human infections and exacerbates existing diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!