A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Understanding the dual mechanism of bioactive peptides targeting the enzymes involved in Renin Angiotensin System (RAS): An approach. | LitMetric

AI Article Synopsis

  • The study focuses on two food-derived peptides, RALP and WYT, which have antihypertensive effects by inhibiting both renin and angiotensin-converting enzyme (ACE) in the Renin-Angiotensin System.
  • Molecular docking and dynamics simulations were employed to analyze how these peptides interact with renin and ACE, revealing different binding behaviors that influence their effectiveness.
  • Findings suggest that while the peptides are less effective at binding to renin due to potential displacement from critical areas, they remain stable in ACE's binding site, indicating opportunities for improving their dual-targeting capabilities.

Article Abstract

Understanding the dual inhibition mechanism of food derivative peptides targeting the enzymes (Renin and Angiotensin Converting enzyme) in the Renin Angiotensin System. Two peptides RALP and WYT were reported to possess antihypertensive activity targeting both renin and ACE, and we have used molecular docking and molecular dynamics simulation, in order to understand the underlying mechanism. The selected peptides (RALP and WYT) from the series of peptides reported were docked to renin and ACE and two binding modes were selected based on the binding energy, interaction pattern and clusters of docking simulation. The enzyme-peptide complexes for renin and ACE (Renin/RALP ACE/RALP; Renin/WYT and ACE/WYT) were subjected to molecular dynamics simulation. Our results identified that the peptides inhibiting renin, tends to move out of the binding pockets (S1' S2') which is critical for potent binding and occupies the less important pockets (S4 and S3). This could possibly be the reason for its low potency. Whereas, the same peptides targeting ACE, tends to be intact in the pocket because of the metal ion coordination and there is an ample room to improve on its efficacy. Our results further pave way for the biochemist, medicinal chemist to design dual peptides targeting the RAS effectively. Communicated by Ramaswamy H. Sarma.

Download full-text PDF

Source
http://dx.doi.org/10.1080/07391102.2019.1695668DOI Listing

Publication Analysis

Top Keywords

peptides targeting
16
renin angiotensin
12
renin ace
12
understanding dual
8
peptides
8
targeting enzymes
8
angiotensin system
8
peptides ralp
8
ralp wyt
8
molecular dynamics
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!