Following cell stress, a wide range of molecular pathways are initiated to orchestrate the stress response and enable adaptation to an environmental or intracellular perturbation. The post-transcriptional regulation strategies adopted during the stress response result in a substantial reorganization of gene expression, designed to prepare the cell for either acclimatization or programmed death, depending on the nature and intensity of the stress. Fundamental to the stress response is a rapid repression of global protein synthesis, commonly mediated by phosphorylation of translation initiation factor eIF2α. Recent structural and biochemical information have added unprecedented detail to our understanding of the molecular mechanisms underlying this regulation. During protein synthesis inhibition, the translation of stress-specific mRNAs is nonetheless enhanced, often through the interaction between RNA-binding proteins and specific RNA regulatory elements. Recent studies investigating the unfolded protein response (UPR) provide some important insights into how posttranscriptional events are spatially and temporally fine-tuned in order to elicit the most appropriate response and to coordinate the transition from an early, acute stage into the chronic state of adaptation. Importantly, cancer cells are known to hi-jack adaptive stress response pathways, particularly the UPR, to survive and proliferate in the unfavorable tumor environment. In this review, we consider the implications of recent research into stress-dependent post-transcriptional regulation and make the case for the exploration of the stress response as a strategy to identify novel targets in the development of cancer therapies. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution Translation > Translation Mechanisms > Translation Regulation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/wrna.1578DOI Listing

Publication Analysis

Top Keywords

stress response
24
cell stress
8
response
8
post-transcriptional regulation
8
protein synthesis
8
rna disease
8
stress
7
translation
5
rna
5
response extreme
4

Similar Publications

How to survive mild winters: Cold acclimation, deacclimation, and reacclimation in winter wheat and barley.

Plant Physiol Biochem

January 2025

Laboratory of Plant Stress Biology and Biotechnology, Department of Plant Genetics and Crop Breeding, Czech Agrifood Research Center, Drnovská 507, 161 06, Prague 6, Ruzyně, Czech Republic.

Cold acclimation and vernalization represent the major evolutionary adaptive responses to ensure winter survival of temperate plants. Due to climate change, mild winters can paradoxically worsen plant winter survival due to cold deacclimation induced by warm periods during winter. It seems that the ability of cold reacclimation in overwintering Triticeae cereals is limited, especially in vernalized plants.

View Article and Find Full Text PDF

Coping after the COVID-19 pandemic: nurses' learning intent and implications for the workforce and education.

Br J Nurs

January 2025

Professor, Department of Nursing, Beaver College of Health Sciences, Appalachian State University, Boone, North Carolina, USA.

Background/aim: Addressing the critical global shortage of nurses requires an understanding of how a global pandemic reshaped nurses' motivations and intentions toward education. This study aimed to describe COVID-19's impact on nurses' intent to pursue additional education.

Method: This descriptive study, based in North Carolina in the USA, used content analysis with an inductive approach to examine the responses of nurses to one open-ended question in a large quantitative workforce survey: how has COVID-19 influenced your plans for future education? Responses were coded with counts and organised into themes and subthemes.

View Article and Find Full Text PDF

Alginate-polylysine-alginate (APA) microencapsulated transgenic human amniotic epithelial cells ameliorate fibrosis in hypertrophic scars.

Inflamm Res

January 2025

Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, No.127 Changle West Road, Xincheng District, Xi'an, 710032, Shaanxi, China.

Background: Hypertrophic scar (HS) is a severe skin fibrosis. Transplanting stem cells carrying anti-fibrotic cytokine genes, like interferon-gamma (IFN-γ), is a novel therapeutic strategy. Human amniotic epithelial cells (hAECs) are ideal seed cells and gene vectors.

View Article and Find Full Text PDF

Sleep quality in lung cancer and specifically non-small-cell lung cancer: a rapid review.

Support Care Cancer

January 2025

Supportive and Palliative Care Service, Strasbourg University Hospital, Strasbourg Translational Medicine Federation (FMTS), Université de Strasbourg, Strasbourg, France.

Purpose: Sleep quality contributes to the improvement of quality of life in cancer patients. However, sleep disturbances, of variable and heterogeneous etiologies, are common and frequently overlooked in lung cancer patients. The present study undertakes a rapid review of available peer-reviewed literature on sleep quality in lung cancer patients, specifically non-small-cell lung cancer patients.

View Article and Find Full Text PDF

Objective: Pediatric brain tumor survivors (PBTS) are at risk for neurocognitive late effects that can resemble symptoms of cognitive disengagement syndrome (CDS). In the current study, we compared the CDS symptoms of PBTS to those of healthy comparison classmates (CC) and examined whether CDS might explain group differences in depressive symptoms. We also explored whether CDS symptoms were associated with engagement-based coping strategies and stress responses, thereby testing one mechanism by which CDS could lead to affective difficulties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!