Iron plays essential roles in the central nervous system. However, how the iron level is regulated in brain cells including glia and neurons remains to be fully clarified. In this study, the localizations of hepcidin, ferroportin, and hephaestin, which are known to be involved in iron efflux, were immunohistochemically examined in autopsied human brains. Immunoreactivities for hepcidin and ferroportin were observed in granular structures within the cytoplasm of reactive astrocytes and epithelial cells of the choroid plexus. Granular structures showing immunoreactivities for hepcidin and ferroportin were also stained with antibodies for early endosome antigen 1 (EEA1). In addition, immunoreactivity for hephaestin was observed in the cytoplasm of epithelial cells of the choroid plexus as well as reactive astrocytes. Immunoreactivity for hephaestin in the cytoplasm of reactive astrocytes was occasionally colocalized with immunoreactivity for EEA1, while that of hephaestin was frequently observed in the cytoplasm showing no immunoreactivity for EEA1. These findings suggest that immunoreactivities for hepcidin and ferroportin are localized in close proximity to granular structures showing immunoreactivity for EEA1 in the cytoplasm of human brain astrocytes. They also suggest that immunoreactivity of hephaestin is localized in the cytoplasm of the choroid plexus epithelium as well as reactive astrocytes of human brains.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/neup.12611 | DOI Listing |
Hepatol Commun
January 2025
Liver Research Center, Beijing Friendship Hospital, Capital Medical University, State Key Laboratory of Digestive Health and National Clinical Research Center of Digestive Diseases, Beijing, China.
Background: Hepcidin, a peptide hormone primarily produced by the liver, regulates iron metabolism by interacting with its receptor, ferroportin. Studies have demonstrated that hepcidin participates in the progression of liver fibrosis by regulating HSC activation, but its regulatory effect on hepatocytes remains largely unknown.
Methods: A carbon tetrachloride (CCl4)-induced liver fibrosis model was established in C57BL/6 wild-type (WT) and hepcidin knockout (Hamp-/-) mice.
Elevated circulating hepcidin levels have been reported in patients with pulmonary artery hypertension (PAH). Hepcidin has been shown to promote proliferation of human pulmonary artery smooth muscle cells (PASMCs) in vitro, suggesting a potential role in PAH pathogenesis. However, the role of human pulmonary artery endothelial cells (PAECs) as either a source of hepcidin, or the effect of hepcidin on PAEC function is not as well described.
View Article and Find Full Text PDFCancers (Basel)
December 2024
Department of Systems Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy.
Colorectal cancer (CRC) is one of the most frequent neoplasms and a major cause of cancer death worldwide. Despite recent advances in treatment approaches, the prognosis of advanced CRC remains poor, thus indicating the necessity of more effective treatments for CRC patients. CRC cells produce high levels of hepcidin, a peptide hormone that binds to the membrane-bound ferroportin and promotes its internalization and degradation, thus sequestering iron into the cancer cells with the downstream effect of enhancing tumor growth.
View Article and Find Full Text PDFExpert Opin Ther Targets
December 2024
Department of Medicine, Haukeland University Hospital, Bergen, Norway.
Introduction: Dysregulation of the hepcidin-ferroportin axis is a hallmark in the pathogenesis of iron overload, ultimately leading to end-organ injury. Hereditary hemochromatosis and iron-loading anemias are characterized by a hepcidin deficiency, making hepcidin a novel therapeutic target for preventing and managing iron overload.
Areas Covered: Modulators of hepcidin expression and molecules mimicking hepcidin are emerging as highly promising therapeutic strategies.
Anemia of Inflammation is a prevalent co-morbidity in patients with chronic inflammatory disorders. Inflammation causes hypoferremia and iron-restricted erythropoiesis by limiting Ferroportin (FPN)-mediated iron export from macrophages that recycle senescent erythrocytes. Macrophage cell surface expression of FPN is reduced by hepcidin-induced degradation and/or by repression of FPN (Slc40a1) transcription via cytokine and Toll-like receptor (TLR) stimulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!