Effect of dissolved organic matter on adsorption of sediments to Oxytetracycline: An insight from zeta potential and DLVO theory.

Environ Sci Pollut Res Int

Key Laboratory of Subsurface Hydrology and Ecology in Arid Areas, Ministry of Education, Chang'an University, Xi'an, 710054, China.

Published: January 2020

To reveal the adsorption mechanism of sediment to antibiotics with the presence of dissolved organic matter (DOM), batch experiments were carried out by oxytetracycline (OTC) on sediments with decayed plants (PDOM) and composted chicken manure (MDOM), and the zeta potential in the system before and after adsorption was measured. Results showed that the PDOM promoted the adsorption process, while the MDOM inhibited the adsorption. Adding PDOM, the change of zeta potential (Δζ) increased by 40.08% for first terrace sediments (FT) and 63.98% for riverbed sediments (RB), respectively; meanwhile, MDOM decreased by 20.04% for FT and 28.39% for RB, respectively. The results of kinetic fitting models of replacing the adsorption amount with Δζ were consistent with the initial. It indicated that there was a positive correlation between the adsorption amount and Δζ, and the zeta potential can be used to quickly judge the degree of adsorption process. The Derjaguin-Landau-Verwey-Overbeek (DLVO) theory describes the interactions of sediment particles. In terms of adsorption amount, zeta potential (absolute value) and total interaction energy all followed the order: RB > FT, RB-PDOM > FT-PDOM, and RB-MDOM > FT-MDOM. The more negative the zeta potential is, the better the dispersion of the particles is. Stronger repulsion is more conducive to adsorbing positively charged OTC. The site energy distribution theory further explained that the distribution of adsorption site in the various states of sediments increased while adding the PDOM and decreased while adding the MDOM.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-019-06787-3DOI Listing

Publication Analysis

Top Keywords

zeta potential
24
adsorption amount
12
adsorption
10
dissolved organic
8
organic matter
8
dlvo theory
8
adsorption process
8
adding pdom
8
amount Δζ
8
zeta
6

Similar Publications

This study presents nanostructured lipid carrier (NLC) co-loaded with Docetaxel (DCT) and 5-Fluorouracil (5-FU) as a targeted therapeutic approach for gastric cancer (GC). Using nanoprecipitation, NLC-DCT/5-FU were synthesized and exhibited an average particle size of 215.3 ± 10.

View Article and Find Full Text PDF

This research demonstrates the design and development of a novel dual-targeting, pH-sensitive liposomal (pSL) formulation of 5-Fluorouracil (5-FU), , (5-FU-iRGD-FA-pSL) to manage breast cancer (BC). The motivation to explore this formulation is to overcome the challenges of systemic toxicity and non-specific targeting of 5-FU, a conventional chemotherapeutic agent. The proposed formulation also combines folic acid (FA) and iRGD peptides as targeting ligands to enhance tumor cell specificity and penetration, while the pH-sensitive liposomes ensure the controlled drug release in the acidic tumor microenvironment.

View Article and Find Full Text PDF

Understanding the interactions between lipid membranes and nucleotide drugs is crucial for nucleic acid therapy. Although several methods have been employed to evaluate nucleotide-lipid membrane interactions, these interactions can be complex; this complexity arises from how external factors, such as ionic strength or temperature, influence the lipid membrane's overall properties. In this study, we prepared a lipid membrane-immobilized monolithic silica (LMiMS) column for high-performance liquid chromatography (HPLC) analysis to understand interactions between the lipid membrane and nucleic acid.

View Article and Find Full Text PDF

REV7: a small but mighty regulator of genome maintenance and cancer development.

Front Oncol

January 2025

Department of Biology, Tufts University, Medford, MA, United States.

REV7, also known as MAD2B, MAD2L2, and FANCV, is a HORMA-domain family protein crucial to multiple genome stability pathways. REV7's canonical role is as a member of polymerase ζ, a specialized translesion synthesis polymerase essential for DNA damage tolerance. REV7 also ensures accurate cell cycle progression and prevents premature mitotic progression by sequestering an anaphase-promoting complex/cyclosome activator.

View Article and Find Full Text PDF

Various polycations and polyanions were sequentially adsorbed onto the gold electrode of a quartz crystal microbalance with dissipation monitoring. The study focused on determining the adsorption kinetics, viscoelastic properties, and electroresponsivity of polyelectrolyte layers. For the first time, it was demonstrated that the structure (compact or expanded) of the layers can be determined by electroresponsivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!