AI Article Synopsis

  • Parkinson's disease leads to a loss of dopamine-producing neurons, and current treatments mainly alleviate motor symptoms without significant neurorecovery.
  • In a study, the mGluR5-negative allosteric modulator CTEP was tested in a mouse model for its effects on motor deficits and neural recovery.
  • Results showed that CTEP improved motor function and promoted neural recovery, potentially by activating the mTOR pathway, suggesting that targeting this pathway could enhance neuroplasticity in Parkinson's disease patients.

Article Abstract

Parkinson's disease is a neurodegenerative disease characterized by a loss of dopaminergic substantia nigra neurons and depletion of dopamine. To date, current therapeutic approaches focus on managing motor symptoms and trying to slow neurodegeneration, with minimal capacity to promote neurorecovery. mGluR5 plays a key role in neuroplasticity, and altered mGluR5 signaling contributes to synucleinopathy and dyskinesia in patients with Parkinson's disease. Here, we tested whether the mGluR5-negative allosteric modulator, (2-chloro-4-[2[2,5-dimethyl-1-[4-(trifluoromethoxy) phenyl] imidazol-4-yl] ethynyl] pyridine (CTEP), would be effective in improving motor deficits and promoting neural recovery in a 6-hydroxydopamine (6-OHDA) mouse model. Lesions were induced by 6-ODHA striatal infusion, and 30 days later treatment with CTEP (2 mg/kg) or vehicle commenced for either 1 or 12 weeks. Animals were subjected to behavioral, pathological, and molecular analyses. We also assessed how long the effects of CTEP persisted, and finally, using rapamycin, determined the role of the mTOR pathway. CTEP treatment induced a duration-dependent improvement in apomorphine-induced rotation and performance on rotarod in lesioned mice. Moreover, CTEP promoted a recovery of striatal tyrosine hydroxylase-positive fibers and normalized FosB levels in lesioned mice. The beneficial effects of CTEP were paralleled by an activation of mammalian target of rapamycin (mTOR) pathway and elevated brain-derived neurotrophic factor levels in the striatum of lesioned mice. The mTOR inhibitor, rapamycin (sirolimus), abolished CTEP-induced neurorecovery and rescue of motor deficits. Our findings indicate that mTOR pathway is a useful target to promote recovery and that mGluR5 allosteric regulators may potentially be repurposed to selectively target this pathway to enhance neuroplasticity in patients with Parkinson's disease.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12035-019-01818-zDOI Listing

Publication Analysis

Top Keywords

parkinson's disease
16
mtor pathway
12
lesioned mice
12
mglur5 allosteric
8
patients parkinson's
8
motor deficits
8
effects ctep
8
ctep
6
disease
5
mglur5
4

Similar Publications

Mesencephalic astrocyte-derived neurotrophic factor inhibits neuroinflammation through autophagy-mediated α-synuclein degradation.

Arch Gerontol Geriatr

December 2024

Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China. Electronic address:

Article Synopsis
  • Parkinson's disease (PD) is characterized by the loss of dopamine neurons and is influenced by α-synuclein aggregation and neuroinflammation, with microglia playing a key role.
  • Previous research identified mesencephalic astrocyte-derived neurotrophic factor (MANF) as a potential inhibitor of α-synuclein accumulation and neuroinflammation, though its molecular mechanisms were not fully understood.
  • This study found that reducing MANF expression increased inflammation (TNF-α), while exogenous MANF promoted autophagy, reduced α-synuclein levels, and inhibited neuroinflammation, suggesting that MANF could be a therapeutic target for PD through its role in autophagy.
View Article and Find Full Text PDF
Article Synopsis
  • The study reviewed systematic reviews (SRs) on repetitive transcranial magnetic stimulation (rTMS) for Parkinson’s disease (PD) to clarify the evidence quality.
  • Only 12.5% of the 16 SRs were rated as high quality, with many suffering from low or very low quality ratings according to rigorous evaluation tools.
  • While rTMS was found to potentially improve motor symptoms in PD, its efficacy for non-motor symptoms remains unclear, indicating a need for future studies to enhance methodological standards and treatment comparisons.
View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how high glucose levels in diabetes lead to kidney cell damage through the activation of a signaling pathway involving DJ-1 and PTEN.
  • DJ-1 is found to be upregulated in kidney cells under high glucose conditions, which triggers the Akt/mTORC1 signaling pathway, resulting in cell growth and fibrosis.
  • The research indicates that inhibiting DJ-1 can prevent glucose-induced cell growth and damage, while overexpressing DJ-1 replicates the harmful effects, highlighting its role in renal injury related to diabetes.
View Article and Find Full Text PDF

Importance: Fall risk and cognitive impairment are prevalent and burdensome in Parkinson disease (PD), requiring efficacious, well-tolerated treatment.

Objective: To evaluate the safety and efficacy of TAK-071, a muscarinic acetylcholine M1 positive allosteric modulator, in participants with PD, increased fall risk, and cognitive impairment.

Design, Setting, And Participants: This phase 2 randomized double-blind placebo-controlled crossover clinical trial was conducted from October 21, 2020, to February 27, 2023, at 19 sites in the US.

View Article and Find Full Text PDF

Advancing Parkinson's diagnosis: seed amplification assay for α-synuclein detection in minimally invasive samples.

Mol Cell Biochem

January 2025

Neurodegenerative Diseases Laboratory, Center for Biomedicine, Universidad Mayor, Avenida Alemania 0281, 4780000, Temuco, La Araucanía, Chile.

Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by tremor, rigidity, and bradykinesia, beginning with early loss of dopaminergic neurons in the ventrolateral substantia nigra and advancing to broader neurodegeneration in the midbrain. The clinical heterogeneity of PD and the lack of specific diagnostic tests present significant challenges, highlighting the need for reliable biomarkers for early diagnosis. Alpha-synuclein (α-Syn), a protein aggregating into Lewy bodies and neurites in PD patients, has emerged as a key biomarker due to its central role in PD pathophysiology and potential to reflect pathological processes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!