Introduction: Bidens odorata Cav (Asteraceae) is a medicinal plant employed for the treatment of pain, anxiety, and depression. This study aimed to evaluate some neuropharmacological effects of an ethanol extract of B. odorata (BOE) and assess its antinociceptive interaction with naproxen and paracetamol.

Materials And Methods: The following neuropharmacological effects were evaluated with the ethanolic extract of B. odorata leaves (BOE) (10-200 mg/kg p.o.): the strychnine-induced-convulsion assay (anticonvulsant effect), rotarod test (locomotor activity), tail suspension test (anti-depressant-like activity), cylinder exploratory test (anxiolytic-like actions), and pentobarbital-induced sleep test (sedative effect). The interaction of the BOE-paracetamol and BOE-naproxen combinations were evaluated with the acetic acid-induced writhing test. The ED value of each drug was estimated and the combinations of paracetamol and naproxen with BOE were calculated.

Results: BOE (100-200 mg/kg) showed anti-convulsant activity by increasing the latency to occurrence of strychnine-induced convulsions, antidepressant-like effects by 28% and 33%, respectively, exerted anxiolytic actions (ED = 125 mg/kg), but did not affect motor locomotion. The pre-treatment with 2 mg/kg flumazenil or 20 mg/kg pentylenetetrazol partially reverted the anxiolytic activity shown by BOE alone. BOE (200 mg/kg) prolonged the duration of sleep with similar effect in comparison to clonazepam (1.5 mg/kg). The combinations of BOE-paracetamol (1:1) and BOE-naproxen (1:1) showed antinociceptive synergism.

Conclusion: BOE induces sedative and anticonvulsant effects. The anxiolytic actions shown by BOE are probably induced by the participation of the GABAergic system. BOE exerts antinociceptive synergistic interaction with paracetamol and naproxen probably by the participation of nitric oxide and ATP-sensitive K channels, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10787-019-00664-8DOI Listing

Publication Analysis

Top Keywords

paracetamol naproxen
12
boe
9
ethanol extract
8
bidens odorata
8
odorata cav
8
cav asteraceae
8
antinociceptive interaction
8
interaction paracetamol
8
neuropharmacological effects
8
extract odorata
8

Similar Publications

Quantitative Analysis of Physical Stability Mechanisms of Amorphous Solid Dispersions by Molecular Dynamic Simulation.

AAPS J

December 2024

State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, 999078, Macau, China.

Amorphous solid dispersions (ASDs) represent a promising strategy for enhancing the solubility of poorly soluble drugs. However, the mechanisms underlying the physical stability of ASDs remain insufficiently understood. This study aims to investigate these mechanisms and propose quantitative thresholds to predict the maximum stable drug loading using molecular dynamics simulations.

View Article and Find Full Text PDF

Platelet-rich plasma (PRP) is an autologous blood product containing concentrated platelets, growth factors, and anti-inflammatory cytokines that promote healing and regeneration. Platelets release active components through a degranulation process, which is inhibited by certain nonsteroidal anti-inflammatory drugs (NSAIDs). Current deferral guidelines are not established, but NSAIDs are expected to have a time-dose relationship with platelet inhibition.

View Article and Find Full Text PDF

Investigating the presence, distribution and risk of pharmaceutically active compounds (PhACs) in wastewater treatment plants, river sediments and fish.

Chemosphere

November 2024

Unit of Persistent Organic Pollutants and Emerging Pollutants in Environment, Department of Environment, CIEMAT, Avda. Complutense 40, 28040, Madrid, Spain. Electronic address:

The increasing consumption of medicines and the lack of efficient technologies in wastewater treatment plants (WWTPs) can release pharmaceutically active compounds (PhACs) into any given river with the subsequent risk to the environment and human health. To assess the occurrence and transfer pathways of PhACs through the river ecosystem, 22 PhACs and one metabolite were analyzed in WWTPs, river sediments and fish collected alongside the Tagus River basin between 2020 and 2022. All the matrices presented at least two drugs being azithromycin the only one quantified in all of them.

View Article and Find Full Text PDF

This review presents a comprehensive analysis of current research on biological treatment processes for removing pharmaceutical compounds (PhCs) from wastewater. Unlike previous studies on this topic, our study specifically delves into the effectiveness and drawbacks of various treatment approaches such as traditional wastewater treatment facilities (WWTP), membrane bioreactors (MBRs), constructed wetlands (CW), and moving bed biofilm reactors (MBBR). Through the examination and synthesis of information gathered from more than 200 research studies, we have created a comprehensive database that delves into the effectiveness of eliminating 19 particular PhCs, including commonly studied compounds such as acetaminophen, ibuprofen, diclofenac, naproxen, ketoprofen, indomethacin, salicylic acid, codeine, and fenoprofen, amoxicillin, azithromycin, ciprofloxacin, ofloxacin, tetracycline, atenolol, propranolol, and metoprolol.

View Article and Find Full Text PDF

Previous studies have shown that the use of nonsteroidal anti-inflammatory drugs (NSAIDs) is associated with increased stress fracture risk. This phenomenon has been studied predominantly in high-activity individuals, so data regarding the general population are limited despite the substantial economic and resource burden of stress fracture injuries within the general US population. Furthermore, our preclinical studies demonstrate that regular use of NSAIDs also diminishes the intrinsic ability of bone to resist fracture.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!