Geographical mapping and modelling of noise pollution from industrial motors: a case study of the Mbalmayo Thermal Power Plant in Cameroon.

Environ Monit Assess

Energy, Electrical and Electronic System Laboratory, Research and Training Unit of Physics, University of Yaoundé I- Cameroon, B.P. 812, Yaoundé, Cameroon.

Published: November 2019

To be able to geographically map, model and evaluate noisy sound emissions from industrial motors, emphases have been laid on various phenomena linked to the propagation of sound waves and their effects on the environment. The failure to respect factory-servicing norms coupled with the depreciation of parts of an industrial motor lead to additional sound production, which due to an accumulation in acoustic power and pressure levels contributes to environmental noise pollution. In this work, a study has been carried out on environmental noise pollution from a thermal power plant in Cameroon, using empirical, diagrammatic, analytical and noise map elaboration methods, with the aim of proposing an optimal protection of the surroundings of the thermal plant from the noise pollution. The results obtained show a similarity in propagation of acoustic pressure and power levels for the different types of frequencies considered. Besides these, the study has revealed that the inhabitants are exposed to sound levels higher than the upper limit of 50 dB and above the alert threshold level of 80 dB. At the geo-localized motors of the plant, the primary sources of acoustic power levels were found to fall within the range from 60 to 98 dB, which is very close to the acoustic pressure levels of between 60 and 95 dB. Due to dispersion of sound, the acoustic power levels are also felt at different points around the plant, considered here as secondary sources. From a general point of view, the observed distribution of the iso-sound contours from the collected data and their general NE-SW orientations show the development of new sources due to cumulative effects and superposition of sound waves at regular intervals. At the same time, the acoustic power and pressure levels have been found to be higher than 80 dB, which is the threshold value for human hearing. This therefore is considered detrimental to human health and wellbeing, provoking the need for a more profound investigation on the existing correlation between levels of sound due to stationary sources and frequency in a high sound medium and elaborating a strategic noise map for the town of Mbalmayo and its environs.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10661-019-7940-zDOI Listing

Publication Analysis

Top Keywords

noise pollution
16
acoustic power
16
pressure levels
12
power levels
12
industrial motors
8
thermal power
8
power plant
8
plant cameroon
8
sound
8
sound waves
8

Similar Publications

Psychophysical assessment of color vision with the Cambridge Color Vision Test in unilateral functional amblyopia.

Arq Bras Oftalmol

January 2025

Research Nucleus in Neuroscience and Behavior and Applied Neuroscience, Universidade de São Paulo, São Paulo, SP, Brazil.

Purpose: Amblyopia is a cortical neurological disorder caused by abnormal visual experiences during the critical period for visual development. Recent works have shown that, in addition to the well-known visual alterations, such as changes in visual acuity, several perceptual aspects of vision are affected. This study aims to analyze and compare the effects of different types of amblyopia on visual color processing and determine whether these effects are correlated with visual acuity.

View Article and Find Full Text PDF

Pathway analysis plays a critical role in bioinformatics, enabling researchers to identify biological pathways associated with various conditions by analyzing gene expression data. However, the rise of large, multi-center datasets has highlighted limitations in traditional methods like Over-Representation Analysis (ORA) and Functional Class Scoring (FCS), which struggle with low signal-to-noise ratios (SNR) and large sample sizes. To tackle these challenges, we use a deep learning-based classification method, Gene PointNet, and a novel $P$-value computation approach leveraging the confusion matrix to address pathway analysis tasks.

View Article and Find Full Text PDF

Hyperspectral Imaging for High Throughput Optical Spectroscopy of pL Droplets.

Anal Chem

January 2025

Nanophotonic Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland.

Droplet-based microfluidics is a powerful tool for high-throughput analysis of liquid samples with significant applications in biomedicine and biochemistry. Nevertheless, extracting content-rich information from single picolitre-sized droplets at high throughputs remains challenging due to the weak signals associated with these small volumes. Overcoming this limitation would be transformative for fields that rely on high-throughput screening, enabling broader multiparametric analysis.

View Article and Find Full Text PDF
Article Synopsis
  • The emergence of Next Generation Sequencing (NGS) technology has transformed clinical diagnostics, providing extensive microbiome data for personalized medicine.
  • Despite its potential, microbiome data's complexity and variability pose challenges for traditional statistical and machine learning approaches, including deep learning.
  • The paper presents a novel feature engineering technique that combines two data feature sets, significantly improving the Deep Neural Network's performance in colorectal cancer detection, raising the Area Under the Curve (AUC) from 0.800 to 0.923, thus enhancing microbiome data analysis and disease detection capabilities.
View Article and Find Full Text PDF

Background: Bipolar Disorder (BD) is a complex disease. It is heterogeneous, both at the phenotypic and genetic level, although the extent and impact of this heterogeneity is not fully understood. One way to assess this heterogeneity is to look for patterns in the subphenotype data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!