Overexpression of affects floral organ and pollen development.

Hortic Res

1Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.

Published: November 2019

The gene was initially identified in tomato and serves as a key regulator of fruit shape. There are 31 OFP members in the tomato genome. However, their roles in tomato growth and reproductive development are largely unknown. Here, we cloned the transcription factor . Tomato plants overexpressing displayed several phenotypic defects, including an altered floral architecture and fruit shape and reduced male fertility. overexpression altered the expression levels of some brassinosteroid (BR)-associated genes, implying that SlOFP20 may play a negative role in the BR response, similar to its ortholog OsOFP19 in rice. Moreover, the transcript accumulation of gibberellin (GA)-related genes was significantly affected in the transgenic lines. SlOFP20 may play an important role in the crosstalk between BR and GA. The pollen germination assay suggested that the pollen germination rate of -OE plants was distinctly lower than that of WT plants. In addition, the tomato pollen-associated genes , , , , and were all suppressed in the transgenic lines. Our data imply that may affect floral organ and pollen development by modulating BR and GA signaling in tomato.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6856366PMC
http://dx.doi.org/10.1038/s41438-019-0207-6DOI Listing

Publication Analysis

Top Keywords

floral organ
8
organ pollen
8
pollen development
8
fruit shape
8
slofp20 play
8
transgenic lines
8
pollen germination
8
tomato
6
overexpression floral
4
pollen
4

Similar Publications

Genome-wide identification and expression analysis of the WRKY gene family in Mikania micrantha.

BMC Genomics

January 2025

College of Biological Science and Food Engineering, Southwest Forestry University, Kunming, Yunnan Province, 650224, China.

Background: WRKY transcription factors (TFs) regulate plant responses to environmental stimuli and development, including flowering. Despite extensive research on different species, their role in the invasive plant Mikania micrantha remains to be explored. The aim of this study was to identify and analyze WRKY genes in M.

View Article and Find Full Text PDF

Medicago2035: Genomes, Functional Genomics and Molecular Breeding.

Mol Plant

December 2024

College of Biological Sciences, China Agricultural University, Beijing 100193, China. Electronic address:

Medicago, a member of the Leguminosae or Fabaceae family, encompasses the most significant forage crops globally, notably alfalfa (Medicago sativa L.). Its close diploid relative, Medicago truncatula, serves as an exemplary model plant for investigating leguminous growth and development, as well as its symbiosis with rhizobia.

View Article and Find Full Text PDF

The phytohormone jasmonates (JAs) regulate plant growth and defense responses. The reproductive organs of flowers are devastated by insect herbivores. However, the molecular mechanisms of floral defense remain largely unknown.

View Article and Find Full Text PDF

Introduction: Orchids are renowned for their intricate floral structures, where sepals and petals contribute significantly to ornamental value and pollinator attraction. In Section , the distinctive curvature of these floral organs enhances both aesthetic appeal and pollination efficiency. However, the molecular and cellular mechanisms underlying this trait remain poorly understood.

View Article and Find Full Text PDF

Erythrina is a Pantropical bird-pollinated genus of Fabaceae. Thus, its flowers are usually large, showy, red or yellowish, offering nectar as the principal resource. There are two main interaction systems with birds in Erythrina: in one, the inflorescences are erect and the flowers are horizontal, offering no landing platform; in the other, the inflorescences are horizontal and the flower parts are more exposed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!