Light programmable micro/nanomotors with optically tunable in-phase electric polarization.

Nat Commun

Materials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA.

Published: November 2019

To develop active nanomaterials that can instantly respond to external stimuli with designed mechanical motions is an important step towards the realization of nanorobots. Herein, we present our finding of a versatile working mechanism that allows instantaneous change of alignment direction and speed of semiconductor nanowires in an external electric field with simple visible-light exposure. The light induced alignment switch can be cycled over hundreds of times and programmed to express words in Morse code. With theoretical analysis and simulation, the working principle can be attributed to the optically tuned real-part (in-phase) electrical polarization of a semiconductor nanowire in aqueous suspension. The manipulation principle is exploited to create a new type of microscale stepper motor that can readily switch between in-phase and out-phase modes, and agilely operate independent of neighboring motors with patterned light. This work could inspire the development of new types of micro/nanomachines with individual and reconfigurable maneuverability for many applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6872749PMC
http://dx.doi.org/10.1038/s41467-019-13255-6DOI Listing

Publication Analysis

Top Keywords

light programmable
4
programmable micro/nanomotors
4
micro/nanomotors optically
4
optically tunable
4
tunable in-phase
4
in-phase electric
4
electric polarization
4
polarization develop
4
develop active
4
active nanomaterials
4

Similar Publications

Germline inactivating mutations of the SLC25A1 gene contribute to various human disorders, including Velocardiofacial (VCFS), DiGeorge (DGS) syndromes and combined D/L-2-hydroxyglutaric aciduria (D/L-2HGA), a severe systemic disease characterized by the accumulation of 2-hydroxyglutaric acid (2HG). The mechanisms by which SLC25A1 loss leads to these syndromes remain largely unclear. Here, we describe a mouse model of SLC25A1 deficiency that mimics human VCFS/DGS and D/L-2HGA.

View Article and Find Full Text PDF

During maritime operations, extreme events such as explosions, grounding, and seal failures can cause water ingress into lubricant compartments, forming oil-water emulsions that significantly affect the lubrication performance of ship stern bearings. Existing studies mainly focus on low water content, with limited exploration of the impact of high water content on lubrication performance. To address this gap, viscosity measurements of oil-water mixtures were conducted, and an emulsification viscosity equation applicable to varying water contents was derived.

View Article and Find Full Text PDF

Analysis of canopy light utilization efficiency in high-yielding rapeseed varieties.

Sci Rep

December 2024

Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Science, Wuhan, 430062, China.

The photosynthetic mechanism responsible for the differences in yield between different rapeseed varieties remains unclear, and there have been no consensus and definite conclusions about the relationship between photosynthesis and yield. Representation of the whole plant by measuring the photosynthetic performance at a single site may lead to biased results. In this study, we comprehensively analyzed the main photosynthetic organs of four high-yielding rapeseed varieties at the seedling, bud, flowering, and podding stages.

View Article and Find Full Text PDF

A chicken protein hydrogel (HG) was enzymatically prepared and blended with a carnauba wax-based oleogel (OG) to form bigels (BG) in ratios of 50:50 to 90:10. These systems were infused with thyme essential oil (TEO) at 0.5 %, 1 %, and 2 % v/v to harness its antioxidant properties.

View Article and Find Full Text PDF

Exogenous estradiol impacts anxiety-like behavior of juvenile male and female Siberian hamsters in a dose-dependent manner.

Horm Behav

December 2024

Department of Psychology, University at Buffalo, SUNY, Buffalo, NY, USA; Neuroscience Program, University at Buffalo, SUNY, Buffalo, NY, USA; Evolution, Ecology, and Behavior Program, University at Buffalo, SUNY, NY, USA.

Anxiety is among the most prevalent mental health issues in children. While it is well established that gonadal steroids influence anxiety-like behavior in adulthood, a potential role in prepubertal juveniles has been overlooked because it is commonly thought that the gonads are quiescent during the juvenile period. However, the juvenile gonads secrete measurable amounts of steroids, and we have recently found that prepubertal ovariectomy decreases anxiety-like behavior of juvenile Siberian hamsters in the light/dark box test.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!