Resonant X-ray absorption, where an X-ray photon excites a core electron into an unoccupied valence state, is an essential process in many standard X-ray spectroscopies. With increasing X-ray intensity, the X-ray absorption strength is expected to become nonlinear. Here, we report the onset of such a nonlinearity in the resonant X-ray absorption of magnetic Co/Pd multilayers near the Co L[Formula: see text] edge. The nonlinearity is directly observed through the change of the absorption spectrum, which is modified in less than 40 fs within 2 eV of its threshold. This is interpreted as a redistribution of valence electrons near the Fermi level. For our magnetic sample this also involves mixing of majority and minority spins, due to sample demagnetization. Our findings reveal that nonlinear X-ray responses of materials may already occur at relatively low intensities, where the macroscopic sample is not destroyed, providing insight into ultrafast charge and spin dynamics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6872582 | PMC |
http://dx.doi.org/10.1038/s41467-019-13272-5 | DOI Listing |
J Biomed Opt
January 2025
CIFICEN (UNCPBA - CICPBA - CONICET), Tandil, Argentina.
Significance: In the last years, time-resolved near-infrared spectroscopy (TD-NIRS) has gained increasing interest as a tool for studying tissue spectroscopy with commercial devices. Although it provides much more information than its continuous wave counterpart, accurate models interpreting the measured raw data in real time are still lacking.
Aim: We introduce an analytical model that can be integrated and used in TD-NIRS data processing software and toolkits in real time.
J Biomed Opt
January 2025
Texas A&M University, Department of Biomedical Engineering, College Station, Texas, United States.
Significance: Accurate values of skin optical properties are essential for developing reliable computational models and optimizing optical imaging systems. However, published values show a large variability due to a variety of factors, including differences in sample collection, preparation, experimental methodology, and analysis.
Aim: We aim to explore the influence of storage conditions on the optical properties of the excised skin from 400 to 1100 nm.
Nat Commun
January 2025
Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, PR China.
The H-evolution kinetics play a pivotal role in governing the photocatalytic hydrogen-evolution process. However, achieving precise regulation of the H-adsorption and H-desorption equilibrium (H/H) still remains a great challenge. Herein, we propose a fine-tuning d-p hybridization strategy to precisely optimize the H/H kinetics in a Ni-B modified CdS photocatalyst (Ni-B/CdS).
View Article and Find Full Text PDFNat Mater
January 2025
Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands.
Cathodic corrosion is an electrochemical phenomenon that etches metals at moderately negative potentials. Although cathodic corrosion probably occurs by forming a metal-containing anion, such intermediate species have not yet been observed. Here, aiming to resolve this long-standing debate, our work provides such evidence through X-ray absorption spectroscopy.
View Article and Find Full Text PDFZhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi
January 2025
Department of Otology Medicine, Shandong Provincial ENT Hospital, Shandong University, Jinan250022, China.
To analyse the 3D-Flair MRI manifestations of the inner ear, vestibular function status, and their correlation with hearing treatment outcomes in patients with severe sudden sensorineural hearing loss (SSNHL), and to explore potential prognostic indicators for sudden deafness. The clinical data of adult patients with unilateral profound sudden sensorineural hearing loss were retrospectively analyzed in Otorhinolaryngology Department of Shandong Provincial ENT Hospital from March 2018 to August 2020. Patients were categorized based on the results of their inner ear 3D-Flair MRI into two groups: the normal MRI group and the abnormal MRI group.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!