Bromodomain proteins (BRD) are key chromatin regulators of genome function and stability as well as therapeutic targets in cancer. Here, we systematically delineate the contribution of human BRD proteins for genome stability and DNA double-strand break (DSB) repair using several cell-based assays and proteomic interaction network analysis. Applying these approaches, we identify 24 of the 42 BRD proteins as promoters of DNA repair and/or genome integrity. We identified a BRD-reader function of PCAF that bound TIP60-mediated histone acetylations at DSBs to recruit a DUB complex to deubiquitylate histone H2BK120, to allowing direct acetylation by PCAF, and repair of DSBs by homologous recombination. We also discovered the bromo-and-extra-terminal (BET) BRD proteins, BRD2 and BRD4, as negative regulators of transcription-associated RNA-DNA hybrids (R-loops) as inhibition of BRD2 or BRD4 increased R-loop formation, which generated DSBs. These breaks were reliant on topoisomerase II, and BRD2 directly bound and activated topoisomerase I, a known restrainer of R-loops. Thus, comprehensive interactome and functional profiling of BRD proteins revealed new homologous recombination and genome stability pathways, providing a framework to understand genome maintenance by BRD proteins and the effects of their pharmacological inhibition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6942044PMC
http://dx.doi.org/10.1101/gad.331231.119DOI Listing

Publication Analysis

Top Keywords

brd proteins
20
homologous recombination
12
genome integrity
8
genome stability
8
brd2 brd4
8
genome
6
proteins
6
brd
6
systematic bromodomain
4
bromodomain protein
4

Similar Publications

Unlabelled: The cat eye syndrome chromosome region candidate 2 (CECR2) protein is an epigenetic regulator involved in chromatin remodeling and transcriptional control. The CECR2 bromodomain (CECR2-BRD) plays a pivotal role in directing the activity of CECR2 through its capacity to recognize and bind acetylated lysine residues on histone proteins. This study elucidates the binding specificity and structural mechanisms of CECR2-BRD interactions with both histone and non-histone ligands, employing techniques such as isothermal titration calorimetry (ITC), nuclear magnetic resonance (NMR) spectroscopy, and a high-throughput peptide assay.

View Article and Find Full Text PDF

Targeted protein degradation (TPD) is a promising new therapeutic modality that leverages the endogenous cellular protein degradation machinery of the ubiquitin-proteasome system (UPS) to degrade selected proteins. Recently, we developed a synthetic macrocycle ligand to recruit CUL3 E3 ligase for TPD. Using this KLHL20 ligand, we constructed the PROTAC BTR2004, which demonstrated potent degradation of BET family proteins BRD 2, 3, and 4.

View Article and Find Full Text PDF

Phase 2A Proof-of-Concept Double-Blind, Randomized, Placebo-Controlled Trial of Nicotinamide in Early Alzheimer Disease.

Neurology

January 2025

From the Institute for Memory Impairments and Neurological Disorders (J.D.G., S.T., G.T., B.V., K.G., D.L.G.), University of California, Irvine; Department of Psychiatry and Human Behavior (J.D.G.), University of California, Irvine; Department of Neurobiology and Behavior (J.D.G., K.G.), University of California, Irvine; Division of Geriatric Medicine (S.T.), Department of Medicine, University of California, Irvine; Department of Neurology (G.T.), University of California, Irvine; Department of Neurology (A.L.P.), Oregon Health and Science University; Department of Statistics (D.L.G.), University of California, Irvine; Department of Neurology and Neurological Sciences (E.T.), Stanford University; Department of Neurology (S.K.), Cedars Sinai Medical Center; Department of Neurology (M.B.), University of California, Los Angeles; Alzheimer's Disease Cooperative Study (R.A.R., G.C.L., A.B., C.R., R.M., R.J., J.P., J.Z., S.J., K.M., H.H.F.), University of California, San Diego; and Department of Neurosciences (G.C.L., J.P., H.H.F.), University of California, San Diego.

Background And Objectives: Nicotinamide is a coenzyme involved in cellular oxidation-reduction reactions that can inhibit Class III histone deacetylases (HDACs) or sirtuins. HDAC inhibition can affect numerous therapeutic pathways, including tau phosphorylation. We tested the hypothesis that nicotinamide treatment could reduce tau phosphorylation in early Alzheimer disease (AD).

View Article and Find Full Text PDF

Bovine respiratory disease (BRD) represents a significant challenge in cattle management due to its multifactorial nature and lack of a gold standard diagnostic method. Procalcitonin (PCT) has emerged as a potential biomarker for bacterial infections in various species, including cattle. This study aimed to investigate plasma PCT concentration variations in pre-weaned dairy calves categorized as BRD-positive using clinical scores (WRSC; BRD-positive ≥5), thoracic ultrasonography with two cut-off (TUS; BRD-positive ≥1 or ≥3), or a combination of both methods (WRSC/TUS1cm or WRSC/TUS3cm).

View Article and Find Full Text PDF

HSPA4 Enhances BRSV Entry via Clathrin-Mediated Endocytosis Through Regulating the PI3K-Akt Signaling Pathway and ATPase Activity of HSC70.

Viruses

November 2024

Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China.

Bovine respiratory syncytial virus (BRSV) is an enveloped RNA virus that utilizes clathrin-mediated endocytosis for cell entry and is a significant pathogen in bovine respiratory disease (BRD). Heat shock protein family A member 4 (HSPA4), a member of the HSP70 family, is known to be involved in the progression of various cancers. However, its role in virus entry has not been previously explored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!