The study is devoted to the electrochemical detection of trace explosives on boron-doped diamond/graphene nanowall electrodes (B:DGNW). The electrodes were fabricated in a one-step growth process using chemical vapour deposition without any additional modifications. The electrochemical investigations were focused on the determination of the important nitroaromatic explosive compounds, 2,4,6-trinitrotoluene (TNT) and 2,4,6-trinitroanisole (TNA). The distinct reduction peaks of both studied compounds were observed regardless of the pH value of the solution. The reduction peak currents were linearly related to the concentration of TNT and TNA in the range from 0.05-15 ppm. Nevertheless, two various linear trends were observed, attributed respectively to the adsorption processes at low concentrations up to the diffusional character of detection for larger contamination levels. The limit of detection of TNT and TNA is equal to 73 ppb and 270 ppb, respectively. Moreover, the proposed detection strategy has been applied under real conditions with a significant concentration of interfering compounds - in landfill leachates. The proposed bare B:DGNW electrodes were revealed to have a high electroactive area towards the voltammetric determination of various nitroaromatic compounds with a high rate of repeatability, thus appearing to be an attractive nanocarbon surface for further applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2019.121672DOI Listing

Publication Analysis

Top Keywords

determination nitroaromatic
12
explosives boron-doped
8
boron-doped diamond/graphene
8
diamond/graphene nanowall
8
nanowall electrodes
8
bdgnw electrodes
8
tnt tna
8
electrochemical determination
4
nitroaromatic explosives
4
electrodes
4

Similar Publications

The light-absorbing chemical components of atmospheric organic aerosols are commonly referred to as Brown Carbon (BrC), reflecting the characteristic yellowish to brown appearance of aerosol. BrC is a highly complex mixture of organic compounds with diverse compositions and variable optical properties of its individual chromophores. BrC significantly influences the radiative budget of the climate and contributes to adverse air pollution effects such as reduced visibility and the presence of inhalable pollutants and irritants.

View Article and Find Full Text PDF

Understanding the origin of enhanced catalytic activity is critical to heterogeneous catalyst design. This is especially important for non-noble metal-based catalysts, notably metal oxides, which have recently emerged as viable alternatives for numerous thermal catalytic processes. For thermal catalytic reduction/hydrogenation using metal oxide nanoparticles, enhanced catalytic performance is typically attributed to increased surface area and oxygen vacancies.

View Article and Find Full Text PDF

Two modular systems were synthesized composed of triphenylamine (ZnTPAP) and pyrene (ZnPyP) covalently linked at meso position of the Zn(II) porphyrins. Both compounds behaved as energy transfer antenna and orthogonal units to enhance the electron donating ability of Zn(II) porphyrins. Detailed photophysical and aggregation studies reveal that an appreciable electronic interaction exists between peripheral units to the porphyrin π-system so that they behave like strong donor materials.

View Article and Find Full Text PDF

Two polyaromatic hydrocarbon-based compounds, N,N,N-tris-((pyren-1-yl)methyl)-1,3,5-triazine-2,4,6-triamine (SM1) and N,N,N-tris-((anthracen-9-yl)methyl)-1,3,5-triazine-2,4,6-triamine (SM2) are explored as chemosensors for detecting nitroaromatic compounds. The chemosensing studies of SM1 and SM2 showed selective sensing of 4-nitroaniline (4NA) in homogeneous medium (in Acetonitrile (ACN) and in DMSO), which is due to the hyperpolarizability of 4NA. Quenching mechanism studied for the three analytes (4NA, 2NA and PA) showed dynamic quenching in SM1 in presence of 4NA and 2NA, while static quenching in presence of PA.

View Article and Find Full Text PDF

Molecular characteristics of organic matters in PM associated with upregulation of respiratory virus infection in vitro.

J Hazard Mater

November 2024

State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou 510640, PR China. Electronic address:

The extent to which organic matters (OM) in PM affect virus infections and the key organic molecules involved in this process remain unclear. Herein, this study utilized ultra-high resolution mass spectrometry coupled with in vitro experiments to identify the organic molecules associated with respiratory virus infection for the first time. Water-soluble organic matters (WSOM) and water-insoluble organic matters (WIOM) were separated from PM samples collected at the urban area of Guangzhou, China.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!