AI Article Synopsis

Article Abstract

In this work, a versatile folic acid (FA) decorated reductive-responsive ε-poly-l-Lysine (ε-PL)-based microcapsules (FA-ε-PLMCs) were designed and facilely assembled by using sonochemical technique. Cellular uptake experiment of FA-ε-PLMCs loaded with Coumarin 6 (C6) as a model of hydrophobic drugs implied that hydrophobic drugs encapsulated inside FA-ε-PLMCs could be delivered selectively into Hela cells via folate-receptor (FR)-mediated endocytosis due to FA decorated on microcapsules. Furthermore, the shells of FA-ε-PLMCs cross-linked by disulfide bonds were derived from sulfhydryl groups (-SH) under ultrasonication. Under reductive environment, the hydrophobic drugs loaded in FA-ε-PLMCs would be easily released due to the cleavage of disulfide bonds. Benefiting from their suitable particle size, good loading capacity for hydrophobic drugs, remarkable targetability and reductive-triggered release, the obtained FA-ε-PLMCs could be a promising hydrophobic drugs carrier for the cancer treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.msec.2019.110251DOI Listing

Publication Analysis

Top Keywords

hydrophobic drugs
20
reductive-triggered release
8
disulfide bonds
8
fa-ε-plmcs
6
hydrophobic
5
drugs
5
sonochemical preparation
4
preparation folic
4
folic acid-decorated
4
acid-decorated reductive-responsive
4

Similar Publications

: The co-formulation of active pharmaceutical ingredients (APIs) is a growing strategy in biopharmaceutical development, particularly when it comes to improving solubility and bioavailability. This study explores a co-precipitation method to prepare co-formulated crystals of griseofulvin (GF) and dexamethasone (DXM), utilizing nanostructured, functionalized polylactic glycolic acid (PLGA) as a solubility enhancer. : An antisolvent precipitation technique was employed to incorporate PLGA at a 3% concentration into the co-formulated GF and DXM, referred to as DXM-GF-PLGA.

View Article and Find Full Text PDF

Niosome Preparation Techniques and Structure-An Illustrated Review.

Pharmaceutics

January 2025

Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia.

A comprehensive review of recent research on niosomes was conducted using a mixed methodology, including searches in databases such as Scopus, PubMed, and Web of Science (WoS). Articles were selected based on relevance. The current review examines the historical development of niosomes focusing on the methods of preparations and the contemporary strategies and prospective advancements within the realm of drug delivery systems, highlighting innovative approaches across transdermal, oral, and cellular delivery.

View Article and Find Full Text PDF

Production of Hydrophobic Microparticles at Safe-To-Inject Sizes for Intravascular Administration.

Pharmaceutics

January 2025

Laboratory of Biointerface Chemistry, Department of Molecules and Materials, Faculty of Science and Technology, Technical Medical Centre and MESA+ Institute, University of Twente, 7522NB Enschede, The Netherlands.

Hydrophobic microparticles are one of the most versatile structures in drug delivery and tissue engineering. These constructs offer a protective environment for hydrophobic or water-sensitive compounds (e.g.

View Article and Find Full Text PDF

Liposomal Formulations: A Recent Update.

Pharmaceutics

December 2024

Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, Maharashtra, India.

Liposome-based drug delivery technologies have showed potential in enhancing medication safety and efficacy. Innovative drug loading and release mechanisms highlighted in this review of next-generation liposomal formulations. Due to poor drug release kinetics and loading capacity, conventional liposomes have limited clinical use.

View Article and Find Full Text PDF

Natural Product Identification and Molecular Docking Studies of Leishmania Major Pteridine Reductase Inhibitors.

Pharmaceuticals (Basel)

December 2024

Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 77, Ghana.

: Pteridine reductase 1 (PTR1) has been one of the prime targets for discovering novel antileishmanial therapeutics in the fight against Leishmaniasis. This enzyme catalyzes the NADPH-dependent reduction of pterins to their tetrahydro forms. While chemotherapy remains the primary treatment, its effectiveness is constrained by drug resistance, unfavorable side effects, and substantial associated costs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!