Impact of perinatal bisphenol A and 17β estradiol exposure: Comparing hormone receptor response.

Ecotoxicol Environ Saf

Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), Rua Cristóvão Colombo 2265, Jardim Nazareth, 15054-000, São José do Rio Preto, São Paulo, Brazil. Electronic address:

Published: January 2020

Hormonal regulation controls mammary gland (MG) development. Therefore some hormone-related factors can disrupt the early phases of MGs development, making the gland more susceptible to long term modifications in its response to circulating hormones. Endocrine disruptors, such as bisphenol A (BPA), are able to cause alterations in hormone receptor expression, leading to changes in the cell proliferation index, which may expose the tissue to neoplastic alterations. Thus, we evaluated the variations in hormone receptor expression in the MG of 6-month old Mongolian gerbils exposed to BPA and 17β estradiol during the perinatal period. Receptors for estrogen alpha (ERα), beta (ERβ), progesterone (PGR), prolactin (PRL-R), and co-localization of connexin 43 (Cx43) and ERα in gerbils were analyzed, and serum concentrations of estradiol and progesterone were assessed. No alterations in body, liver, and ovary-uterus complex weights were observed. However, there was an increase in epithelial ERα expression in the 17β estradiol (E2) group and in PGR in the BPA group. Although immunohistochemistry did not show alterations in ERβ expression, western blotting revealed a decrease in this protein in the BPA group. PRL-R was more present in epithelial cells in the vehicle control (VC), E2, and BPA groups in comparison to the intact control group. Cx43 was more frequent in E2 and BPA groups, suggesting a protective response from the gland against possible malignancy. Serum concentration of estradiol reduced in VC, E2, and BPA groups, confirming that alterations also impacts steroid levels. Consequently, perinatal exposure to BPA and the reference endogenous estrogen, 17β estradiol, are able to increase the tendency of endocrine disruption in MG in a long term manner, since repercussions are observed even 6 months after exposure.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2019.109918DOI Listing

Publication Analysis

Top Keywords

17β estradiol
16
hormone receptor
12
bpa groups
12
long term
8
bpa
8
receptor expression
8
bpa group
8
estradiol
6
alterations
5
impact perinatal
4

Similar Publications

Context: Guidelines for use of injectable estradiol esters (valerate [EV] and cypionate [EC]) among transgender and gender diverse (TGD) individuals designated male at birth vary considerably, with many providers noting supraphysiologic serum estradiol concentrations based on current dosing recommendations.

Objectives: 1. Determine dose of injectable estradiol (subcutaneous [SC] and intramuscular [IM]) needed to reach guideline-recommended estradiol concentrations for TGD adults using EC/EV.

View Article and Find Full Text PDF

Hormonal factors play an essential role as an underlying causative factor of oligoasthenoteratozoospermia (OAT), and these patients can benefit from hormonal medications that modulate the hypothalamic-pituitary-gonadal axis. This review aims to outline the various medications used as hormonal therapy in treating infertile men with OAT. This manuscript focuses on essential hormonal evaluation, identifying men who would benefit from treatment, selecting the appropriate medication, determining the duration of therapy, and evaluating hormonal treatment outcomes.

View Article and Find Full Text PDF

Endocrine Hormones and Their Impact on Pubertal Gynecomastia.

J Clin Med

December 2024

Department of Aesthetic and Reconstructive Breast Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100144, China.

Pubertal gynecomastia (PG) is a common condition characterized by the abnormal development and hyperplasia of unilateral or bilateral breast tissue in adolescent males, affecting up to 50% of appropriately aged adolescents and exhibiting rising prevalence over recent years. The etiology of PG is multifaceted, encompassing physiological, pharmacological, and pathological factors. This narrative review synthesizes evidence from a comprehensive selection of peer-reviewed literature, including observational studies, clinical trials, systematic reviews, and case reports, to explore the pivotal role of endocrine hormones in the pathogenesis of PG.

View Article and Find Full Text PDF

The Response of the miRNA Profiles of the Thyroid Gland to the Artificial Photoperiod in Ovariectomized and Estradiol-Treated Ewes.

Animals (Basel)

December 2024

State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.

The photoperiod has been considered to be a key environmental factor in sheep reproduction, and some studies have shown that the thyroid gland plays an important role in mammalian reproduction, but the molecular mechanism is still unclear. In this study, we used the artificial-light-controlled, ovariectomized, and estradiol-treated model (OVX + E2 model); healthy and consistent 2-3-year-old Sunite multiparous ewes were collected; and thyroids were collected for testing, combined with RNA-seq technology and bioinformatics analysis, to analyze the effects of different photoperiods (long photoperiod treatment for 42 days, LP42; short photoperiod treatment for 42 days, SP42; SP42 transferred to LP42, SPLP42) on the variations in the miRNA profiles of the thyroid gland. A total of 105 miRNAs were differentially expressed in the thyroid gland, most of which were new miRNAs.

View Article and Find Full Text PDF

17β-estradiol promotes osteogenic differentiation of BMSCs by regulating mitophagy through ARC.

J Orthop Surg Res

January 2025

Department of Oral and Maxillofacial Surgery - Head & Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China.

The study aims to elucidate the mechanism through which 17β-estradiol facilitates osteogenic differentiation in bone marrow mesenchymal stem cells (BMSCs). In our study, lentiviral transfection was employed to establish apoptosis repressor with caspase recruitment domain (ARC) knockdown or overexpression in BMSCs. The impact of 17β-estradiol on ARC expression was assessed using western blot, RT-PCR and immunofluorescence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!