Applications of miRNAs in cardiac development, disease progression and regeneration.

Stem Cell Res Ther

Disease Modeling and Therapeutics Laboratory, A*STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore.

Published: November 2019

Development of the complex human heart is tightly regulated at multiple levels, maintaining multipotency and proliferative state in the embryonic cardiovascular progenitors and thereafter suppressing progenitor characteristics to allow for terminal differentiation and maturation. Small regulatory microRNAs (miRNAs) are at the level of post-transcriptional gene suppressors, which enhance the degradation or decay of their target protein-coding mRNAs. These miRNAs are known to play roles in a large number of biological events, cardiovascular development being no exception. A number of critical cardiac-specific miRNAs have been identified, of which structural developmental defects have been linked to dysregulation of miRNAs in the proliferating cardiac stem cells. These miRNAs present in the stem cell niche are lost when the cardiac progenitors terminally differentiate, resulting in the postnatal mitotic arrest of the heart. Therapeutic applications of these miRNAs extend to the realm of heart failure, whereby the death of heart cells in the ageing heart cannot be replaced due to the arrest of cell division. By utilizing miRNA therapy to control cell cycling, the regenerative potential of matured myocardium can be restored. This review will address the various cardiac progenitor-related miRNAs that control the development and proliferative potential of the heart.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6868784PMC
http://dx.doi.org/10.1186/s13287-019-1451-2DOI Listing

Publication Analysis

Top Keywords

applications mirnas
8
mirnas
7
heart
6
cardiac
4
mirnas cardiac
4
development
4
cardiac development
4
development disease
4
disease progression
4
progression regeneration
4

Similar Publications

Osteoarthritis (OA) is a joint disease characterized by articular cartilage degradation. Persistent low-grade inflammation defines OA pathogenesis, with crucial involvement of pro-inflammatory M1-like macrophages. While mesenchymal stromal cells (MSC) and their small extracellular vesicles (sEV) hold promise for OA treatment, achieving consistent clinical-grade sEV products remains a significant challenge.

View Article and Find Full Text PDF

Cardiac growth patterns and metabolism before and after birth in swine: Role of miR in proliferation, hypertrophy and metabolism.

J Mol Cell Cardiol Plus

September 2024

Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia.

The adult mammalian heart is unable to undergo cardiac repair, limiting potential treatment options after cardiac damage. However, the fetal heart is capable of cardiac repair. In preparation for birth, cardiomyocytes (CMs) undergo major maturational changes that include exit from the cell cycle, hypertrophic growth, and mitochondrial maturation.

View Article and Find Full Text PDF

The effective clinical translation of messenger RNA (mRNA), small interfering RNA (siRNA), and microRNA (miRNA) for therapeutic purposes hinges on the development of efficient delivery systems. Key challenges include their susceptibility to degradation, limited cellular uptake, and inefficient intracellular release. Polymeric drug conjugates (PDCs) offer a promising solution, combining the benefits of polymeric carriers and therapeutic agents for targeted delivery and treatment.

View Article and Find Full Text PDF

Bibliometric analysis of glycolysis and prostate cancer research from 2004 to 2024.

Discov Oncol

January 2025

School of Rehabilitation Medicine and Health Care, Hunan University of Medicine, No. 492 Jinxi South Road, Huaihua, 418000, China.

Background: Prostate cancer (PCa) ranks as the second most common disease among men and the fourth most prevalent cancer worldwide. Enhanced glycolysis and excessive lactate secretion are recognized as critical factors driving the progression of various cancers. This study systematically investigated the research trends associated with glycolysis in PCa through bibliometric analysis.

View Article and Find Full Text PDF

Noncoding RNAs in sepsis-associated acute liver injury: Roles, mechanisms, and therapeutic applications.

Pharmacol Res

January 2025

Department of Intensive Care Medicine, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing 400016, China. Electronic address:

Sepsis is a life-threatening syndrome characterized by organ dysfunction caused by a dysregulated host response to infection. Sepsis-associated acute liver injury (SA-ALI) is a frequent and serious complication of sepsis that considerably impacts both short-term and long-term survival outcomes. In intensive care units (ICUs), the mortality rate of patients with SA-ALI remains high, mostly due to the absence of effective early diagnostic markers and suitable therapeutic strategies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!