Background: Malaria and the human immunodeficiency virus (HIV) infection constitute public health problems in Cameroon including the South West Region (SWR). This study determined the prevalence of malaria parasites and haematological abnormalities in HIV positive patients in Limbe, Cameroon from April-July 2014.
Methods: The study was cross-sectional and involved 411 participants who were administered structured questionnaires to record socio-demographic and clinical data. Three hundred and nine (309) HIV positive patients and one hundred and two (102) HIV negative individuals were examined clinically and venous blood collected for malaria parasite detection, HIV infection diagnosis and full blood count analysis.
Results: Overall malaria parasite prevalence was 14.1% (58/411). This prevalence was significantly higher (P < 0.001) in the HIV negative participants (33.3%, 34/102) compared to the HIV positive patients (7.8%, 24/309). Amongst HIV positive participants, malaria parasite prevalence was significantly higher in female patients (P = 0.003), febrile patients (P < 0.001), anaemic patients (P = 0.015) and in patients who were not on antiretroviral treatment (ART) (P = 0.03) when compared with their respective counterparts. Among the HIV negative group, though not significant, malaria parasite prevalence was higher in females, febrile and anaemic patients when compared with their respective counterparts. Overall anaemia prevalence was 52.1% (214/309) and was significantly higher (P = 0.004) in HIV positive patients (56%, 173) than in HIV negative participants (40.2%, 41). Malaria/HIV co-infected patients had a significantly lower mean value of Hb (P = 0.002), RBC (P = 0.002) and Hct (P = 0.001) when compared with HIV-infected patients.
Conclusion: HIV negative participants had a higher prevalence of malaria parasites than their HIV positive counterparts. Anaemia prevalence was higher in HIV positive patients than in HIV negative participants. Malaria/HIV co-infected patients presented with more red blood cell abnormalities than HIV-infected patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6873725 | PMC |
http://dx.doi.org/10.1186/s12879-019-4629-4 | DOI Listing |
Nat Med
January 2025
Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands.
Malaria vaccines consisting of metabolically active Plasmodium falciparum (Pf) sporozoites can offer improved protection compared with currently deployed subunit vaccines. In a previous study, we demonstrated the superior protective efficacy of a three-dose regimen of late-arresting genetically attenuated parasites administered by mosquito bite (GA2-MB) compared with early-arresting counterparts (GA1-MB) against a homologous controlled human malaria infection. Encouraged by these results, we explored the potency of a single GA2-MB immunization in a placebo-controlled randomized trial.
View Article and Find Full Text PDFSci Rep
January 2025
Molecular Biology and Malaria Immunology Research Group, Instituto René Rachou (IRR), Fundação Oswaldo Cruz (FIOCRUZ), Minas Gerais, Brazil.
Rapid Diagnostic Tests (RDTs) have been an important diagnostic tool for detecting P. falciparum malaria in resource-limited settings. Most tests are designed to detect the Histidine-rich Protein 2 (HRP2).
View Article and Find Full Text PDFSci Rep
January 2025
Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel St, London, WC1E 7HT, UK.
The significance of multiplication rate variation in malaria parasites needs to be determined, particularly for Plasmodium falciparum, the species that causes most virulent infections. To investigate this, parasites from cases presenting to hospital in The Gambia and from local community infections were culture-established and then tested under exponential growth conditions in a standardised six-day multiplication rate assay. The multiplication rate distribution was lower than seen previously in clinical isolates from another area in West Africa where infection is more highly endemic.
View Article and Find Full Text PDFPLoS One
January 2025
School of Nursing and Public Health, College of Health Sciences, Howard College Campus, University of KwaZulu-Natal, Durban, South Africa.
Vector resistance, human population movement, and cross-border malaria continue to pose a threat to the attainment of malaria elimination goals. Border malaria is prominent in border regions characterised by poor access to health services, remoteness, and vector abundance. Human socio-economic behaviour, vectoral behaviour, access and use of protective methods, age, sex, and occupation have been identified in non-border regions as key predictors for malaria.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, United States of America.
Vector control is essential for eliminating malaria, a vector-borne parasitic disease responsible for over half a million deaths annually. Success of vector control programs hinges on community acceptance of products like long-lasting insecticide-treated nets (LLINs). Communities in malaria-endemic regions often link LLIN efficacy to their ability to control indoor pests such as bed bugs (Cimex lectularius L.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!