Background: S-sulphenylation is a ubiquitous protein post-translational modification (PTM) where an S-hydroxyl (-SOH) bond is formed via the reversible oxidation on the Sulfhydryl group of cysteine (C). Recent experimental studies have revealed that S-sulphenylation plays critical roles in many biological functions, such as protein regulation and cell signaling. State-of-the-art bioinformatic advances have facilitated high-throughput in silico screening of protein S-sulphenylation sites, thereby significantly reducing the time and labour costs traditionally required for the experimental investigation of S-sulphenylation.
Results: In this study, we have proposed a novel hybrid computational framework, termed SIMLIN, for accurate prediction of protein S-sulphenylation sites using a multi-stage neural-network based ensemble-learning model integrating both protein sequence derived and protein structural features. Benchmarking experiments against the current state-of-the-art predictors for S-sulphenylation demonstrated that SIMLIN delivered competitive prediction performance. The empirical studies on the independent testing dataset demonstrated that SIMLIN achieved 88.0% prediction accuracy and an AUC score of 0.82, which outperforms currently existing methods.
Conclusions: In summary, SIMLIN predicts human S-sulphenylation sites with high accuracy thereby facilitating biological hypothesis generation and experimental validation. The web server, datasets, and online instructions are freely available at http://simlin.erc.monash.edu/ for academic purposes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6868744 | PMC |
http://dx.doi.org/10.1186/s12859-019-3178-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!