Targeted drug delivery systems are commonly used to improve the therapeutic index of anti-cancer drugs by increasing their selectivity and reducing systemic distribution and toxicity. Ligand-conjugated nanoparticles (NPs) can be effectively applied for active chemotherapeutic targeting to overexpressed receptors of tumor cells. In this study, transferrin (T) was successfully conjugated with poly-l-lactic-co-glycolic acid (PLGA) using ethylene diamine confirmed by NMR, for the loading of docetaxel trihydrate (DCT) into PLGA nanoparticles (NPs). The DCT-loaded T-conjugated PLGA NPs were produced by an emulsion-solvent evaporation technique, and a 3 full factorial design was used to optimize the nanoparticle formulations. The DCT-loaded T-conjugated PLGA NPs were characterized by FTIR spectroscopy, differential scanning calorimetry, powder X-ray diffraction (PXRD), TEM, particle size, and zeta potential analysis. In vitro release kinetics confirmed that release of DCT from the designed formulations followed a zero-order kinetics and a diffusion controlled non-Fickian release profile. The DCT-loaded T-conjugated PLGA NPs were evaluated in vitro in MCF-7 cells for bioactivity assessment. Cytotoxicity studies confirmed that the Tconjugated PLGA NPs were more active than the non-conjugated counterparts. Cell uptake studies re-confirmed the ligand-mediated active targeting of the formulated NPs. From the cell cycle analysis, the anti-cancer activity of DCT-loaded T-conjugated PLGA NPs was shown to occur by arresting the G/M phase.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6918445 | PMC |
http://dx.doi.org/10.3390/polym11111905 | DOI Listing |
Pharmaceutics
January 2025
MyBiotech GmbH, Industriestraße 1B, 66802 Überherrn, Germany.
: Drug delivery systems (DDSs) offer efficient treatment solutions to challenging diseases such as central nervous system (CNS) diseases by bypassing biological barriers such as the blood-brain barrier (BBB). Among DDSs, polymeric nanoparticles (NPs), particularly poly(lactic-co-glycolic acid) (PLGA) NPs, hold an outstanding position due to their biocompatible and biodegradable qualities. Despite their potential, the translation of PLGA NPs from laboratory-scale production to clinical applications remains a significant challenge.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China.
The aim of this study was to investigate the inhibitory effect of nintedanib (BIBF) on glioblastoma (GBM) cells and its mechanism of action and to optimize a drug delivery strategy to overcome the limitations posed by the blood-brain barrier (BBB). We analyzed the inhibition of GBM cell lines following BIBF treatment and explored its effect on the autophagy pathway. The cytotoxicity of BIBF was assessed using the CCK-8 assay, and further techniques such as transmission electron microscopy, Western blotting (WB), and flow cytometry were employed to demonstrate that BIBF could block the autophagic pathway by inhibiting the fusion of autophagosomes and lysosomes, ultimately limiting the proliferation of GBM cells.
View Article and Find Full Text PDFBiomedicines
December 2024
Lillian S. Wells Department of Neurosurgery, College of Medicine, University of Florida, 1600 SW Archer Road, Gainesville, FL 32610, USA.
Neurotrauma, stroke, and subarachnoid hemorrhage (SAH) are symptomatically diverse and etiologically complex central nervous system pathologies. Despite numerous therapeutic modalities that are available to minimize neurologic damage and secondary injury, the prognosis can still be dismal and unpredictable. Nanoparticle (NP) technology allows for deliberate, modular, and minimally invasive drug delivery.
View Article and Find Full Text PDFArch Biochem Biophys
January 2025
Department of Cardiology, Zhongnan Hospital of Wuhan University, No 169 Donghu Road, Wuchang District, Wuhan, 430071, Hubei Province, China. Electronic address:
Background: Astaxanthin (ASX), a fat-soluble carotenoid mainly sourced from Haematococcus pluvialis, shows promise for clinical applications in chronic inflammatory diseases. This study investigates whether ASX can mitigate atherosclerosis (AS) by modulating macrophage ferroptosis and provides astaxanthin-loaded polylactic acid-glycolic acid nanoparticles (ASX-PLGA NPs) as comparison.
Method: ApoE-/- mice were fed a high-fat diet with ASX or statin intervention.
J Nanobiotechnology
January 2025
State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
Pyroptosis, a recently identified cellular demise regulated by gasdermin family proteins, is emerging as a promising avenue in cancer immunotherapy. However, the realm of light-controlled pyroptosis in cancer cells remains largely unexplored. In this study, we took a deliberate approach devoid of any chemical alterations to develop a novel photosensitizer called "pharmaceutical-dots (pharm-dots)" by combining nonemissive polymers (Poly (lactic-co-glycolic acid), PLGA) with nonfluorescent invisible molecules like curcumin, berberine, oridonin into PLGA nanoparticles (PLGA-NPs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!