Evaluation of heavy metal element detection in municipal solid waste incineration fly ash based on LIBS sensor.

Waste Manag

School of Electric Power, South China University of Technology, Guangzhou, Guangdong 510640, China; Guangdong Province Key Laboratory of Efficient and Clean Energy Utilization, Guangzhou, Guangdong 510640, China; Guangdong Province Engineering Research Center of High Efficient and Low Pollution Energy Conversion, Guangzhou, Guangdong 510640, China. Electronic address:

Published: February 2020

Heavy metal elements are the main pollutants in municipal solid waste incineration (MSWI) fly ash, the online detection of heavy metals in MSWI fly ash could benefit its subsequent solidification treatment and land-filling. In this paper, laser induced breakdown spectroscopy (LIBS) was introduced to the rapid measurement of heavy metal elements in MSWI fly ash. Considering the serious matrix effect in MSWI fly ash, the multiple linear regression model combined with internal standard method was used to establish the calibration curves of heavy metals. Validated samples were used to evaluate the performance of quantitative analysis models. The results show that linear regression coefficients (R) of the calibration curves for Cd, Cr, Cu, Pb, Zn are 0.981, 0.988, 0.968, 0.978 and 0.993, respectively. The average relative error of the prediction results are from 6.8 to 20.3%. The detection limits of the heavy metal content are Cd (11.13 μg/g), Cr (44.87 μg/g), Cu (36.18 μg/g), Pb (10.83 μg/g), Zn (12.27 μg/g), respectively, which are far below those required in the Standard for Pollution Control on the Landfill Site of Municipal Solid Waste (GB16889-2008). All results indicate the great potential of LIBS sensor for online rapid detection of heavy metals in MSWI fly ash.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.wasman.2019.11.010DOI Listing

Publication Analysis

Top Keywords

fly ash
24
mswi fly
20
heavy metal
16
municipal solid
12
solid waste
12
heavy metals
12
waste incineration
8
libs sensor
8
metal elements
8
detection heavy
8

Similar Publications

Dry solidification of chloride salts and heavy metals in waste incineration fly ash by mayenite.

Waste Manag

December 2024

Jiangsu Key Laboratory of E-waste Recycling, School of Resources and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, PR China. Electronic address:

There are hazardous substances such as chloride salts and heavy metals in the municipal solid waste incineration fly ash (WIFA). During thermal treatment, the concentrated chlorides promote the volatilization of heavy metals, increasing the ecological risk. The water washing method is also employed as a pre-treatment for WIFA, but a substantial volume of wastewater with high chloride content is produced that poses challenges for effective treatment.

View Article and Find Full Text PDF

With the continuous clamor for a reduction in embodied carbon in cement, rapid solution to climate change, and reduction to resource depletion, studies into substitute binders become crucial. These cementitious binders can potentially lessen our reliance on cement as the only concrete binder while also improving concrete functional properties. Finer particles used in cement microstructure densify the pore structure of concrete and enhance its performance properties.

View Article and Find Full Text PDF

Secondary aluminum dross self-heating enhances hazardous waste vitrification.

Waste Manag

December 2024

School of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, Zhejiang Gongshang University, Hangzhou, Zhejiang 310012, China. Electronic address:

This study demonstrates the potential of secondary aluminum dross (SAD) to enhance the vitrifying hazardous waste incineration fly ash (FA) and bottom slag (BS). Based on the CaO-SiO-AlO ternary phase diagram, a liquid phase can be achieved at relatively low temperatures by carefully adjusting the AlO content, particularly when the CaO to SiO ratio is around 0.66.

View Article and Find Full Text PDF

Effects of Nanosilica on the Properties of Ultrafine Cement-Fly Ash Composite Cement Materials.

Nanomaterials (Basel)

December 2024

School of Civil Engineering and Architecture, Henan University, Kaifeng 475000, China.

The increasing incidence of structural failures, such as cracks and collapses, in rock masses within mines, tunnels, and other civil engineering environments has attracted considerable attention among scholars in recent years. Grouting serves as a principal solution to these issues. The Renlou Coal Mine in the Anhui Province is used as a case study to evaluate the effectiveness of nanosilica (NS) as an additive in ultrafine cement (UC), introducing a novel grouting material for practical applications.

View Article and Find Full Text PDF

The construction industry is rapidly adopting Industry 4.0 technologies, creating new opportunities to address persistent environmental and operational challenges. This review focuses on how Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL) are being leveraged to tackle these issues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!