A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Biotransformation of ibuprofen in biological sludge systems: Investigation of performance and mechanisms. | LitMetric

Biotransformation of ibuprofen in biological sludge systems: Investigation of performance and mechanisms.

Water Res

School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China; Shenzhen Research Institute of Sun Yat-sen University, Shenzhen, PR China. Electronic address:

Published: March 2020

Ibuprofen (IBU), a common non-steroidal anti-inflammatory drug (NSAID), is widely used by humans for controlling fever and pain, and is frequently detected in the influent of wastewater treatment plants and different aquatic environments. In this study, the biotransformation of IBU in activated sludge (AS), anaerobic methanogenic sludge (AnMS) and sulfate-reducing bacteria (SRB)-enriched sludge systems was investigated at three different concentrations of 100, 500 and 1000 μg/L via a series of batch and continuous studies. IBU at concentration of 100 μg/L was effectively biodegraded by AS whereas AnMS and SRB-enriched sludge were less effective in IBU biodegradation at all concentrations tested. However, at higher IBU concentrations of 500 and 1000 μg/L, AS showed poor IBU biodegradation and chemical oxygen demand (COD) removal due to inhibition of aerobic heterotrophic bacteria (i.e., Candidatus Competibacter) by IBU and/or IBU biotransformation products. The microbial analyses showed that IBU addition shifted the microbial community structure in AS, AnMS and SRB-enriched sludge systems, however, the removals of COD, nitrogen and sulfur in both anaerobic sludge systems were not affected significantly (p > 0.05). The findings of this study provided a new insight into biotransformation of IBU in three important biological sludge systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2019.115303DOI Listing

Publication Analysis

Top Keywords

sludge systems
20
srb-enriched sludge
12
ibu
10
sludge
8
biological sludge
8
biotransformation ibu
8
500 1000 μg/l
8
anms srb-enriched
8
ibu biodegradation
8
systems
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!