Glioma is an aggressive and lethal type of brain tumor that originates from glial cells. Glioblastoma cells confer considerable resistance to induction of apoptosis, which may be due to overexpression of anti-apoptotic proteins, or the reduction of the level of some pro-apoptotic proteins. MicroRNAs (miRNAs) can affect the cell biology pathways, including replication, autophagy, necrosis, and apoptosis by regulating gene expression. In this study, using bioinformatics methods, we selected the anti-apoptotic genes, BCL2L1 and MCL1, and microRNA that targeted them (miR-342). In the next step, the Lentiviral particles that contain miR-342 (LV-miR-342) were synthesized in HEK293T cell lines. Glioblastoma cell lines, U251 and U87, were transduced with LV-miR-342. The gene expression and apoptosis induction were then assayed by real-time PCR and flow cytometry respectively. The present study showed that increasing the expression of miR-342 reduced the expression of the anti-apoptotic genes, BCL2L1 and MCL1. The results of luciferase assay reports confirmed that miR-342 targeted BCL2L1 and MCL1. In addition, flow cytometry analysis indicated that miR-342 overexpression induced apoptosis in glioblastoma cells. As well as, Western blotting results confirmed a decrease in BCL2L1 protein following overexpression of miR-342 in glioblastoma cells. These findings may provide a novel therapeutic target for the treatment of glioblastoma.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biopha.2019.109641 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!