Functional deficits due to neuronal loss are a common theme across multiple neuropathologies, including traumatic brain injury (TBI). Apart from mitigating cell death, another approach to treating brain injuries involves re-establishing the neural circuitry at the lesion site by utilizing exogeneous and/or endogenous stem cells to achieve functional recovery. While there has been limited success, the emergence of new bioactive matrices that promote neural repair introduces new perspectives on the development of regenerative therapies for TBI. This review briefly discusses current development on cell-based therapies and the use of bioactive matrices, hydrogels in particular, when incorporated in regenerative therapies. Desirable characteristics of bioactive matrices that have been shown to augment neural repair in TBI models were identified and further discussed. Understanding the relative outcomes of newly developed biomaterials implanted in vivo can better guide the development of biomaterials as a therapeutic strategy, for biomaterial-based cellular therapies are still in their nascent stages. Nonetheless, the value of bioactive matrices as a treatment for acute brain injuries should be appreciated and further developed. STATEMENT OF SIGNIFICANCE: Cell-based therapies have received attention as an alternative therapeutic strategy to improve clinical outcome post-traumatic brain injury but have achieved limited success. Whilst the incorporation of newly developed biomaterials in regenerative therapies has shown promise in augmenting neural repair, studies have revealed new hurdles which must be overcome to improve their therapeutic efficacy. This review discusses the recent development of cell-based therapies with a specific focus on the use of bioactive matrices in the form of hydrogels, to complement cell transplantation within the injured brain. Moreover, this review consolidates in vivo animal studies that demonstrate relative functional outcome upon the implantation of different biomaterials to highlight their desirable traits to guide their development for regenerative therapies in traumatic brain injury.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.actbio.2019.11.032 | DOI Listing |
ACS Biomater Sci Eng
January 2025
J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, United States.
The complexation of nucleic acids and collagen forms a platform biomaterial greater than the sum of its parts. This union of biomacromolecules merges the extracellular matrix functionality of collagen with the designable bioactivity of nucleic acids, enabling advances in regenerative medicine, tissue engineering, gene delivery, and targeted therapy. This review traces the historical foundations and critical applications of DNA-collagen complexes and highlights their capabilities, demonstrating them as biocompatible, bioactive, and tunable platform materials.
View Article and Find Full Text PDFMolecules
January 2025
Department of Pharmacy, University "Gabriele d'Annunzio" Chieti-Pescara, Via dei Vestini 31, 66100 Chieti Scalo, CH, Italy.
Nowadays, several processes to enrich desired bioactive compounds in plant extracts have been developed. The objective of the present study was to assess the performance of bovine serum albumin in increasing the extractive yields of anthraquinones and diarylheptanoids from their respective raw plant powder extracts. Aloe emodin, rhein, emodin, and chrysophanol, from , , , and , and curcumin from were analyzed in parent dry extracts, solubilized either with water, ethanol, or hydro-alcoholic mixtures, and in ones treated with aqueous solutions of bovine serum albumin by HPLC with UV/Vis detection.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Research Institute on Terrestrial Ecosystems (IRET), CNR, Via Pietro Castellino 111, 80131 Naples, Italy.
Marine polysaccharide hydrogels have emerged as an innovative platform for regulating the in vivo release of natural bioactive compounds for medical purposes. These hydrogels, which have exceptional biocompatibility, biodegradability, and high water absorption capacity, create effective matrices for encapsulating different bioactive molecules. In addition, by modifying the physical and chemical properties of marine hydrogels, including cross-linking density, swelling behavior, and response to external stimuli like pH, temperature, or ionic strength, the release profile of encapsulated bioactive compounds is strictly regulated, thus maximizing therapeutic efficacy and minimizing side effects.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznan, Poland.
Apigenin (APG), a bioactive flavonoid with promising therapeutic potential, suffers from poor water solubility, which limits its bioavailability. To address this, solid dispersions of APG were prepared using ball milling with sodium alginate (SA), Pluronic F-68 (PLU68), Pluronic F-127 (PLU127), PVP K30, and PVP VA64 as polymeric excipients. These dispersions were screened for apparent solubility in water and buffers with pH 1.
View Article and Find Full Text PDFFoods
January 2025
Nutrition School, Federal University of Bahia, Rua Basilio da Gama s/n, Canela, Salvador 40110-907, BA, Brazil.
Essential and edible oils have applications in reducing oxidative processes and inhibiting the growth of microorganisms in meats and their derivatives, providing a natural alternative to synthetic preservatives. This preservative action meets the demand for clean labels and safe products, aiming to replace synthetic additives that pose potential health risks. Advances and limitations in applying essential and edible oils in meat preservation, highlighting their preservative properties or ability to improve nutritional profiles, are explored in this study.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!